\(\left(a^n.b^{n+1}.c^n\right)^k.\left(a^k.b^kc^{k+1}\right)^n\) k,n thuộc N

Đề bài...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Ta có: \(\left(a^n\cdot b^{n+1}\cdot c^n\right)^k\cdot\left(a^k\cdot b^b\cdot c^{k+1}\right)^n=a^{kn}\cdot b^{kn}\cdot b^k\cdot c^{nk}\cdot a^{kn}\cdot b^{kn}\cdot c^{kn}\cdot c^n=a^{2kn}\cdot b^{2kn}\cdot c^{2kn}\cdot b^k\cdot c^n\)

\(=a^{2kn}\cdot b^{k\cdot\left(2n+1\right)}\cdot c^{n\cdot\left(2k+1\right)}\)

Đây là dạng thu gọn của đa thức trên

Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)

\(=\left(-1\right)^n\cdot a^n\cdot a^k\)

\(=\left(-1\cdot a\right)^n\cdot a^k\)

\(=\left(-a\right)^n\cdot a^k\)(đpcm)

18 tháng 11 2015

\(=\frac{3.8.15........\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4......n\right)}=\frac{1.3.2.4.3.5..............\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4......n\right)}=\frac{\left(1.2.3......\left(n-1\right)\right)\left(3.4.5......\left(n+1\right)\right)}{\left(2.3.4....n\right)\left(2.3.4.......n\right)}\)

\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)

Bài này mình làm rồi còn gì?

1 tháng 3 2017

1a) \(10^{n+1}-6\cdot10^n\)

\(=10^n\cdot10-6\cdot10^n\)

= \(10^n\left(10-6\right)\)

\(=10^n\cdot4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n\cdot2^3+2^n\cdot2^2-2^n\cdot2+2^n\)

\(=2^n\left(2^3+2^2-2+1\right)\)

\(=2^n\cdot11\)

c) \(90\cdot10^k-10^{k+2}+10^{k+1}\)

\(=90\cdot10^k-10^k\cdot10^2+10^k\cdot10\)

\(=10^k\left(90-10^2+10\right)=0\)

d) \(2,5\cdot5^{n-3}\cdot10+5^n-6\cdot5^{n-1}\)

\(=\dfrac{2,5\cdot10\cdot5^n}{5^3}+5^n-\dfrac{6\cdot5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6\cdot5^n}{5}\)

\(=\dfrac{5^n+5^n\cdot5-6\cdot5^n}{5}=\dfrac{5^n\left(5-6\right)+5^n}{5}=0\)

2. \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)

\(M=\left(7x^2-8xy+y^2\right)-\left(6x^2-4xy\right)\)

\(M=7x^2-8xy+y^2-6x^2+4xy\)

\(M=7x^2-6x^2-8xy+4xy+y^2\)

\(M=x^2-4xy+y^2\)

1 tháng 3 2017

Mk cảm ơn bn nhiều lắm ạ Lê Mỹ Linh

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự