K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

Ta có: \(\left(a^n\cdot b^{n+1}\cdot c^n\right)^k\cdot\left(a^k\cdot b^b\cdot c^{k+1}\right)^n=a^{kn}\cdot b^{kn}\cdot b^k\cdot c^{nk}\cdot a^{kn}\cdot b^{kn}\cdot c^{kn}\cdot c^n=a^{2kn}\cdot b^{2kn}\cdot c^{2kn}\cdot b^k\cdot c^n\)

\(=a^{2kn}\cdot b^{k\cdot\left(2n+1\right)}\cdot c^{n\cdot\left(2k+1\right)}\)

Đây là dạng thu gọn của đa thức trên

18 tháng 11 2015

\(=\frac{3.8.15........\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4......n\right)}=\frac{1.3.2.4.3.5..............\left(n-1\right)\left(n+1\right)}{\left(2.3.4.....n\right)\left(2.3.4......n\right)}=\frac{\left(1.2.3......\left(n-1\right)\right)\left(3.4.5......\left(n+1\right)\right)}{\left(2.3.4....n\right)\left(2.3.4.......n\right)}\)

\(=\frac{1.\left(n+1\right)}{n.2}=\frac{n+1}{2n}\)

Bài này mình làm rồi còn gì?

Ta có: \(\left(-1\right)^n\cdot a^{n+k}\)

\(=\left(-1\right)^n\cdot a^n\cdot a^k\)

\(=\left(-1\cdot a\right)^n\cdot a^k\)

\(=\left(-a\right)^n\cdot a^k\)(đpcm)