Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng AM-GM, ta có:
\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge4\Rightarrow b+\dfrac{1}{a}\ge4\)
Sử dụng Cauchy-Schwarz, ta có:
\(A\ge\dfrac{\left(a+\dfrac{1}{a}+b+\dfrac{1}{b}\right)^2}{2}\ge\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Đẳng thức xảy ra khi \(a=\dfrac{1}{2};b=2\)
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
Lời giải:
Đặt biểu thức vế trái là A
Có \(a+\frac{1}{a+1}=\frac{a^2+a+1}{a+1}=\frac{a^2}{a+1}+1=\frac{a^2}{a+1}+\frac{1}{2}+\frac{1}{2}\)
Áp dụng BĐT Cauchy-Schwarz:
\(a+\frac{1}{a+1}\geq \frac{(a+1+1)^2}{a+1+2+2}=\frac{(a+2)^2}{a+5}\)
Thực hiện tương tự với các phân thức còn lại và nhân theo vế:
\(\Rightarrow A\geq \frac{(a+2)^2(b+2)^2(c+2)^2}{(a+5)(b+5)(c+5)}\)
Áp dụng BĐT AM-GM:
\((a+2)(b+2)(c+2)\geq 3\sqrt[3]{a}.3\sqrt[3]{b}.3\sqrt[3]{c}=27\sqrt[3]{abc}\geq 27\)
\(\Rightarrow A\geq \frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\) (1)
Ta sẽ cm
\(\frac{27(a+2)(b+2)(c+2)}{(a+5)(b+5)(c+5)}\geq \frac{27}{8}(*)\Leftrightarrow 8(a+2)(b+2)(c+2)\geq (a+5)(b+5)(c+5)\)
\(\Leftrightarrow 8[abc+8+2(ab+bc+ac)+4(a+b+c)]\geq abc+125+5(ab+bc+ac)+25(a+b+c)\)
\(\Leftrightarrow 7abc+11(ab+bc+ac)+7(a+b+c)\geq 61\)
BĐT trên luôn đúng theo AM_GM:
\(7abc+11(ab+bc+ac)+7(a+b+c)\geq 7abc+33\sqrt[3]{a^2b^2c^2}+21\sqrt[3]{abc}\geq 7+33+21=61\)
Do đó (*) đúng.
Từ \((1);(2)\Rightarrow A\geq \frac{27}{8}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=1\)
Bài 1:
Vì $a,b,c$ là 3 cạnh tam giác nên \(b+c-a; c+a-b; a+b-c>0\)
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{a^2}{b+c-a}+(b+c-a)\geq 2\sqrt{a^2}=2a\)
\(\frac{b^2}{a+c-b}+(a+c-b)\geq 2\sqrt{b^2}=2b\)
\(\frac{c^2}{a+b-c}+(a+b-c)\geq 2\sqrt{c^2}=2c\)
Cộng theo vế và rút gọn:
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}+a+b+c\geq 2(a+b+c)\)
\(\Rightarrow \frac{a^2}{b+c-a}+\frac{b^2}{c+a-b}+\frac{c^2}{a+b-c}\geq a+b+c\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(ab+\frac{a}{b}\geq 2\sqrt{ab.\frac{a}{b}}=2a\)
\(ab+\frac{b}{a}\geq 2\sqrt{ab.\frac{b}{a}}=2b\)
\(\frac{a}{b}+\frac{b}{a}\geq 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Cộng theo vế và rút gọn:
\(\Rightarrow 2(ab+\frac{a}{b}+\frac{b}{a})\geq 2(a+b+1)\)
\(\Rightarrow ab+\frac{a}{b}+\frac{b}{a}\geq a+b+1\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=1$
a)\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
=\(\dfrac{a}{a}+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{c}+\dfrac{c}{a}+\dfrac{c}{b}\)
=\(1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\)
=3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
áp dụng BĐT cô si ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
⇔ \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
cmtt ta có \(\dfrac{b}{c}+\dfrac{c}{b}\ge2\); \(\dfrac{a}{c}+\dfrac{c}{a}\ge2\)
=> 3+\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge9\)
=> \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(đpcm\right)\)
a)Áp dụng bđt AM-GM cho 3 số không âm ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
TT\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta có:\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\dfrac{1}{abc}}=9\left(đpcm\right)\)
b)\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\)
Svac-xo:
\(\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Lại có:\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)(tự cm)
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{c^2}{ca+cb}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
áp dụng bđ cosy
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
=> đpcm
6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
hay với mọi x thuộc R đều là nghiệm của bpt
7.áp dụng bđt cosy
\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)
\(A\ge\dfrac{\left(a+\dfrac{1}{a}+b+\dfrac{1}{b}\right)^2}{2}\\ \ge\dfrac{\left(1+\dfrac{4}{a+b}\right)^2}{2}\\ =\dfrac{25}{2}\)
Dấu "=" xảy ra khi a=b=1/2