K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

ta có: (a+b)2 = a2 + 2ab + b2

a2 + b2

đề là j z?

20 tháng 9 2018

đề mà bạn ơi cái này là hằng đẳng thức lớp 8 mà ...lớp 6 hơi hoang mang??

17 tháng 8 2021

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

20 tháng 5 2017

a) a2 + 2.a.b + b2 = 9 và ( a + b ) ( a + b ) = 9

b) a2 - b2 = 33 và ( a + b ) ( a - b ) = 33

16 tháng 8 2016

Ta có

\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)

=> A<-1/2

 

+) \(\left(a+b\right)\left(a-b\right)=a\left(a-b\right)+b\left(a-b\right)=a^2-ab+ba-b^2=a^2-b^2\left(đpcm\right)\)

+) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a\left(a+b\right)+b\left(a+b\right)=a^2+ab+ba+b^2=a^2+2ab+b^2\left(đpcm\right)\)

14 tháng 6 2019

Bài này chỉ đơn giản là nhân đa thức với đa thức

\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)

\(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2=a^2+2ab+b^2\)

20 tháng 11 2016

1. a=b=0

2. a=0=> b=+-2

a=+-1=> b=+-1

b=0=> a=+-2

30 tháng 7 2019

A có: \(\frac{2014-2}{3-2}+1=2013\) ( thừa số )

Ta thấy mỗi thừa số của A đều có dạng \(\frac{1}{n^2}-1\)với \(n\inℕ^∗\)và \(n>1\)

Có \(\frac{1}{n^2}< 1\Rightarrow\frac{1}{n^2}-1< 1-1=0\)

=> Mỗi thừa số của A đều nhỏ hơn 0

=> A là tích của 2013 thừa số nhỏ hơn 0

Mà 2013 là số lẻ

=> A < 0

Mà B = \(\frac{1}{2}\)> 0

=> A < B

23 tháng 8 2018

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)..........\left(\frac{1}{2018^2}-1\right)\)

Ta có :

\(\frac{1}{2^2}-1>-\frac{1}{2}\)

\(\frac{1}{3^2}-1>-\frac{1}{2}\)

...........

\(\frac{1}{2018^2}-1>\frac{1}{2}\)

\(\Rightarrow A>B\)