\(\left(a-b\right)^2-2ab=a^2+b^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

<=> a^2 - 2ab + b^2 - 2ab = a^2 +b^2

<=> a^2 +b^2 - a^2 - b^2 = 0

<=> 0 = 0 (luôn đúng)

16 tháng 6 2018

= bien doi ve phai co a2 + b2 = a+ b2 +2ab - 2ab =[ a+b]2 - 2ab

..............

25 tháng 5 2017

\(a,b)\)Ta có: \(\left(a\pm b\right)^2\)

\(=\left(a\pm b\right)\left(a\pm b\right)\)

\(=a^2\pm ab\pm ab+b^2\)

\(=a^2\pm ab+b^2\)

\(c)\)\(\left(a+b\right)\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)

25 tháng 5 2017

2ab*

7 tháng 8 2016

biến đổi vế trái :  a. \(\left(a+b\right)^2=a^2+2ab+B^2=VP\)

                          b. \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=VP\)

                          c. \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=VP\)

                          xem 7 hằng đẳng thức đáng nhớ

7 tháng 8 2016

a)\(=\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\)

b)\(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)

\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)

\(=a^3-a^2b-2a^2b+2ab^2+ab^2-b^3\)

\(=a^3-3a^2b-3ab^2-b^3\)

c)\(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\)

\(=a^2+ab+ac+ab+b^2+bc+ac+cb+c^2\)

\(=a^2+b^2+c^2+2ab+2bc+2ac\)

14 tháng 8 2018

\(\left(a-b+c\right)^2=\left[a+\left(-b\right)+c\right]^2\)

                             \(=a^2+\left(-b^2\right)+c^2+2.a.\left(-b\right)+2.\left(-b\right)\left(-c\right)+2.c.a\)

                              \(=a^2+b^2+c^2-2ab-2bc+2ca\)

3 tháng 7 2018

a)   \(x^2+2x+1=\left(x+1\right)^2\)

b)   \(9x^2+y^2+6xy=\left(3x+y\right)^2\)

c)   \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)

d)   \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

e)   \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

f) mk chỉnh lại đề nha:

 \(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)

g)  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

h)  \(x^2-10xy+25y^2=\left(x-5y\right)^2\)

3 tháng 7 2018

cảm ơn bn nha!

7 tháng 8 2018

a) \(a^2+b^2=\left(a+b\right)^2-2ab\)

\(VP=\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)\(=a^2+b^2=VT\)

\(\Rightarrowđpcm\)

b)\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\)

\(VP=a^4+b^4+2a^2b^2-2a^2b^2=a^4+b^4=VT\)\(\Rightarrowđpcm\)

c) ​\(a^6+b^6=\left(a^2+b^2\right)\left[\left(a^2+b^2\right)^2-3a^2b^2\right]\)

\(VP=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=a^6+b^6\)

\(VP=VT\Rightarrowđpcm\)

d)\(a^6-b^6=\left(a^2-b^2\right)[\left(a^2+b^2\right)^2-a^2b^2]\)

\(VP=\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)=a^6-b^6=VT\)

\(VP=VT\Rightarrowđpcm\)

27 tháng 11 2019

giải cho ai vậy ông nội :) =_=?