Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 1002 - 992 + 982 -...+22 - 12
= (1002 - 992) + (982 - 972) +...+ (22 - 12)
= 199 + 195 + 191 + ... + 1
= (\(\frac{199-1}{4}+1\))(\(\frac{199+1}{2}\)) = 5050
b/ Y chang câu a luôn nha
c/ \(C=\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}\)
\(=\frac{560.1000}{200^2}=14\)
1272 + 146.127 + 732
= 1272 + 2 . 73 .127 + 732
= (127 + 73 ) 2
= 200 2
Bài 1:
a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)
b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)
\(18^8-\left(18^8-1\right)=1\)
\(c,100^2-99^2+98^2-97^2+...+2^2-1\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)
áp dụng công thức Gauss ta đc đáp án là:10100
d, mk khỏi ghi đề dài dòng:
\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:
\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)
\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)
\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)
1c,
\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)
A = x 2x2 - 4 và 24và2 tại x = 1.856; y = -0,988
B = ( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )(x2+và2) tại x = 2003 ; y= 2004
A= chắc sai đề
B=( x 4 - y 4 )(x4-và4) : ( x 2 + y 2 )
=(x^2+y^2).(x^2-y^2)/(x^2+y^2)
=x^2-y^2
=(x-y)(x+y)
thay số =(2003-2004)(2003+2004)=-4007
\(B=\frac{780^2-220^2}{125^2+150.125+75^2}\)\(=\frac{\left(780+220\right).\left(780-220\right)}{\left(125+75\right)^2}\)\(=\frac{1000.560}{200^2}\)\(=\frac{560000}{40000}=14\)
a) \(127^2+146.127+73^2=127^2+2.73.127+73^2=\left(127+73\right)^2=40000\)b) \(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)=18^8-\left(18^8-1\right)=1\)
c) \(100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=100+99+98+97+...+2+1\)
\(=\dfrac{100\left(100+1\right)}{2}=5050\)
d) \(\left(20^2+18^2+16^2+...+4^2+2^2\right)-\left(19^2+17^2+15^2+...+3^2+1^2\right)\) \(=20^2-19^2+18^2-17^2+16^2-15^2+...+4^2-3^2+2^2-1^2\)
\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+...+\left(2-1\right)\left(2+1\right)\)\(=20+19+18+17+...+2+1\)
\(=\dfrac{20\left(20+1\right)}{2}=210\)
e) \(\dfrac{780^2-220^2}{125^2+150.125+75^2}\)
\(=\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560.1000}{200}=2800\)
a) 1272 + 146.127 + 732
= 1272 + 2.73.127 + 732
= (127 + 73)2 = 2002 = 40000
b) 98 . 28 - (184 - 1)(184 + 1)
= (9.2)8 - 188 + 1
= 188 - 188 + 1 = 1
c) \(\frac{780^2-220^2}{125^2+150.125+75^2}=\frac{\left(780-220\right)\left(780+220\right)}{125^2+2.75.125+75^2}=\frac{560.1000}{\left(125+75\right)^2}=\frac{560000}{200^2}\)
\(=\frac{560000}{40000}=14\)
a) 1272 + 146.127 + 732
= 1272 + 2.73.127 + 732
= ( 127 + 73 )2
= 2002 = 40 000
b) 98.28 - ( 184 - 1 )( 184 + 1 )
= ( 9.2 )8 - [ ( 184 )2 - 12 ]
= 188 - 188 + 1
= 1
c) \(\frac{780^2-220^2}{125^2+150\cdot125+75^2}\)
\(=\frac{\left(780-220\right)\left(780+220\right)}{125^2+2\cdot75\cdot125+75^2}\)
\(=\frac{560\cdot1000}{\left(125+75\right)^2}\)
\(=\frac{560000}{200^2}\)
\(=\frac{560000}{40000}=14\)
Bạn hãy click vào trong câu hỏi tương tự nhé !
\(\left(780^2-220^2\right):\left(125^2+150\cdot125+75^2\right)\)
\(=\dfrac{1000\cdot540}{200^2}\)
\(=\dfrac{10000\cdot54}{40000}=\dfrac{54}{4}=\dfrac{27}{2}\)