K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2021

Đề bài ko đúng em, tử số bên trái là 32 mới hợp lý chứ không phải 3.2

Ta có: \(\left|5x+7\right|+\left|5x-1\right|=\left|5x+7\right|+\left|1-5x\right|\ge\left|5x+7+1-5x\right|=8\) (1)

\(\left(2y+1\right)^{2020}\ge0\Rightarrow3\left(2y+1\right)^{2020}+4\ge4\)

\(\Rightarrow\dfrac{32}{3\left(2y+1\right)^{2020}+4}\le\dfrac{32}{4}=8\) (2)

Từ (1); (2) \(\Rightarrow\left|5x+7\right|+\left|5x-1\right|\ge\dfrac{32}{3\left(2y+1\right)^{2020}+4}\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(5x+7\right)\left(1-5x\right)\ge0\\2y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{7}{5}\le x\le\dfrac{1}{5}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

17 tháng 2 2017

a,thay x=1,y=-1

=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12

b,thay=-1/2,y=1/7

=>B=4

17 tháng 2 2017

thks yeu

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)

16 tháng 10 2019

e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)

Vậy ....

23 tháng 11 2021

\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)

13 tháng 7 2018

1, \(\left|\frac{3}{2}x-1\right|-2x=1\Rightarrow\left|\frac{3}{2}x-1\right|=1+2x\)

Vì \(\left|\frac{3}{2}x-1\right|\ge0\Leftrightarrow1+2x\ge0\Leftrightarrow x\ge\frac{-1}{2}\)

\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-1=1+2x\\\frac{3}{2}x-1=-1-2x\end{cases}\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-2x=1+1\\\frac{3}{2}x+2x=-1+1\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{-1}{2}x=2\\\frac{7}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-4\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)

Vậy x = 0 

2,3 tương tự 1

4, Vì \(\left|x\left(x^2-\frac{5}{4}\right)\right|\ge0\Rightarrow x\ge0\)

Ta có: \(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Rightarrow x\left(x^2-\frac{5}{4}\right)=\pm x\) (1)

- Nếu x = 0 thì 0 = 0 thỏa mãn (1)

- Nếu \(x\ne0\) thì \(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)

Vì \(x\ge0\Rightarrow x\in\left\{0;\frac{1}{2};\frac{3}{2}\right\}\)

Vậy...