Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7)\(\dfrac{-19}{34}\left(\dfrac{17}{19}+\dfrac{49}{18}\right)+\dfrac{49}{18}\left(\dfrac{19}{34}-\dfrac{18}{7}\right)\)
=\(\dfrac{-19}{34}.\dfrac{17}{19}+\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}-\dfrac{18}{7}.\dfrac{49}{18}\)
=\(\dfrac{1}{2}+\left(\dfrac{49}{18}.\dfrac{-19}{34}+\dfrac{49}{18}.\dfrac{19}{34}\right)-7\)
=\(\dfrac{1}{2}+\left[\dfrac{49}{18}\left(\dfrac{-19}{34}+\dfrac{19}{34}\right)\right]-7\)
=\(\dfrac{1}{2}+0-7=\dfrac{-13}{2}\)
8)\(\dfrac{29}{32}\left(\dfrac{41}{36}-\dfrac{32}{58}\right)-\dfrac{41}{36}\left(\dfrac{29}{32}+\dfrac{18}{41}\right)\)
=\(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{29}{32}.\dfrac{32}{58}-\dfrac{41}{36}.\dfrac{29}{32}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(\left(\dfrac{29}{32}.\dfrac{41}{36}-\dfrac{41}{36}\dfrac{29}{32}\right)-\dfrac{29}{32}.\dfrac{32}{58}+\dfrac{18}{41}.\dfrac{41}{36}\)
=\(0-\dfrac{1}{2}+\dfrac{1}{2}=0\)
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\Rightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2=\left(\frac{-6}{7}\right)^2\)
\(\Rightarrow\hept{\begin{cases}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{cases}}\Rightarrow\hept{\begin{cases}5x=\frac{-1}{7}\\5x=\frac{-13}{7}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{cases}}}\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}^2\right)^3\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\)
\(x-\frac{2}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{2}{9}\)
\(x=\frac{6}{9}=\frac{2}{3}\)
\(a.\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\frac{6^2}{7^2}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Rightarrow5x+1=\frac{6}{7}\)
\(\Rightarrow5x=\frac{6}{7}-1\)
\(\Rightarrow5x=-\frac{1}{7}\)
\(\Rightarrow x=-\frac{1}{7}:5\)
\(\Rightarrow x=-\frac{1}{35}\)
Vậy \(x=-\frac{1}{35}\)
\(b\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right).^6\)
\(\left(x-\frac{2}{9}\right)^3=\frac{\left(2^2\right)^3}{\left(3^2\right)^3}\)
\(\left(x-\frac{2}{9}\right)^3=\frac{4^3}{9^3}\)
\(\left(x-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\)
\(\Rightarrow x-\frac{2}{9}=\frac{4}{9}\)
\(\Rightarrow x=\frac{4}{9}+\frac{2}{9}\)
\(\Rightarrow x=\frac{6}{9}=\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
Bài 1:
a)\(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2=\left(-\dfrac{6}{7}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=-\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\)
Bài 2:
a)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
Dễ thấy: \(\left\{{}\begin{matrix}x^2\ge0\\\left(y-\dfrac{1}{10}\right)^4\ge0\end{matrix}\right.\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
b)\(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\le0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{40}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\ge0\)
Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{40}\le0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}=0\\\left(y^2-\dfrac{1}{4}\right)^{40}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)
`(4^{-2}:(1/3)^2xx1/2)/((-1/6)^2)`
`=((1/16:1/9)xx1/2)/(1/36)`
`=36xx1/2xx(1/16xx9)`
`=18xx9/16`
`=81/8`
A -\(\dfrac{24}{25}\)
B -\(\dfrac{5}{21}\)
C -\(\dfrac{24}{47}\)
D -\(\dfrac{19}{42}\)
tick cho mk
\(\left(3x+1\right)^2:\left(-\dfrac{1}{4}\right)=\left(\dfrac{-49}{4}\right)\)
\(\Rightarrow\left(3x+1\right)^2=\dfrac{49}{16}\)
\(\Rightarrow\left[{}\begin{matrix}3x+1=\dfrac{7}{4}\\3x+1=\dfrac{-7}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{-11}{12}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{4}\) hoặc \(x=\dfrac{-11}{12}\)
Ta có: \(\left(5x+1\right)^2=\dfrac{36}{49}\)
\(\Leftrightarrow\left(5x+1\right)^2=\left(\dfrac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\dfrac{6}{7}\)
\(\Leftrightarrow5x=\dfrac{13}{7}\)
\(\Leftrightarrow x=\dfrac{13}{35}\)
Vậy \(x=\dfrac{13}{35}\)
(5x + 1)2 = \(\dfrac{36}{49}\)
<=> (5x + 1)2 = (\(\dfrac{6}{7}\))2
<=> 5x + 1 = \(\dfrac{6}{7}\)
<=> 5x = \(-\dfrac{1}{7}\)
<=> x = \(-\dfrac{1}{35}\)
@Võ Ngọc Tường Vy