Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge-2;y\ge-11\)
\(x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\)
\(\Leftrightarrow x^2+\left(y+21\right)x-2y^2-33y-100=0\)
\(\Delta=\left(y+21\right)^2+4\left(2y^2+33y+100\right)=\left(3y+29\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-y-21+3y+29}{2}=y+4\\x=\dfrac{-y-21-3y-29}{2}=-2y-25\end{matrix}\right.\)
TH1: \(x=-2y-25\Rightarrow x+2y=-25\)
Mà \(x+2y\ge-2+2.\left(-11\right)=-23>-25\)
\(\Rightarrow\) Pt vô nghiệm
TH2: \(x=y+4\) thay vào pt dưới:
\(\sqrt{y+6}+2\sqrt{y+11}=\sqrt{\left(3y+10\right)^3}\)
\(\Leftrightarrow\sqrt{y+6}-2+2\sqrt{y+11}-6=\sqrt{\left(3y+10\right)^3}-8\)
\(\Leftrightarrow\dfrac{y+2}{\sqrt{y+6}+2}+\dfrac{2\left(y+2\right)}{\sqrt{y+11}+3}=\dfrac{3\left(y+2\right)\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2\Rightarrow x=2\\\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}=\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\left(1\right)\end{matrix}\right.\)
Xét (1), ta có:
\(\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}< \dfrac{1}{2}+\dfrac{2}{3}< 2\)
\(\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}=\dfrac{3\left(3y+14\right)}{\sqrt{3y+10}+2}+6>2\)
\(\Rightarrow\left(1\right)\) vô nghiệm
Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(2;-2\right)\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\) DK: \(x\ne3\)
PT\(\Leftrightarrow\left(x+\frac{3x}{x-3}\right)^2-6\frac{x^2}{x-3}-40=0\)\(\Leftrightarrow\frac{x^4}{\left(x-3\right)^2}-6\frac{x^2}{x-3}-40=0\)
Dat \(\frac{x^2}{x-3}=a\). PTTT \(a^2-6a-40=0\)\(\Leftrightarrow\left(a-10\right)\left(a+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=10\\a=-4\end{matrix}\right.\)
giai tiep
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\) DK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
PT\(\Leftrightarrow\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}=1\Leftrightarrow2\sqrt{x}=x-1\)\(\Leftrightarrow x-2\sqrt{x}+1=2\Leftrightarrow\left(\sqrt{x}-1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{matrix}\right.\)
1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0
Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)và \((x = -2 ; y = 3)\)
\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)
\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))
Thay vào phương trình (2) giải dễ dàng.
\(y=\left(5-\sqrt{21}\right)^x+7\left(5+\sqrt{21}\right)^x\)
ta tính y'>0
hàm đồng biến
mặt khác g=\(2^{x+3}\)
tính g'>0
là hàm đồng biến
mà x=0 là 1 nghiệm của pt
suy ra x=0 là nghiệm duy nhất của pt