Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)
3x2 - 12x - |x - 2| > 12
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)
Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)
Hệ phương trình trở thành:
\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=5\left(1\right)\\\left(x+y\right)\left(x-y\right)^2=3\left(2\right)\end{cases}}\)
Ta có: x+y khác 0; x-y khác 0
+) Với x =0 thay vào ta có hệ phương trình mới: \(\hept{\begin{cases}y.y^2=5\\y.y^2=3\end{cases}}\) loại
+) Với x khác 0, Đặt y=xt
Chia vế theo vế (1) cho (2), Ta có:
\(\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{5}{3}\Leftrightarrow\frac{x^2+x^2t^2}{\left(x-xt\right)^2}=\frac{5}{3}\)
\(\Leftrightarrow\frac{1+t^2}{\left(1-t\right)^2}=\frac{5}{3}\)
\(\Leftrightarrow3\left(1+t^2\right)=5\left(1-t\right)^2\)
\(\Leftrightarrow2t^2-10t+2=0\Leftrightarrow\orbr{\begin{cases}t=\frac{5+\sqrt{21}}{2}\\t=\frac{5-\sqrt{21}}{2}\end{cases}}\)
Ta có: y=xt thế vào phương trình (1) hoặc (2) ta có phương trình ẩn x. Gợi ý như vậy em làm tiếp nhé! :)
a/ ĐKXĐ: \(x\ne\left\{-\frac{2}{3};\frac{1}{3}\right\}\)
\(\Leftrightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)
\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)
\(\Leftrightarrow3x=-15\Rightarrow x=-5\)
b/ ĐKXĐ: \(x\ne\left\{-\frac{4}{3};1\right\}\)
\(\Leftrightarrow\left(4x+7\right)\left(3x+4\right)=\left(12x+5\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2+37x+28=12x^2-7x-5\)
\(\Leftrightarrow44x=-33\Rightarrow x=-\frac{3}{4}\)
c/ ĐKXĐ: \(x\ne\left\{-\frac{1}{4};0\right\}\)
\(\Leftrightarrow\frac{3\left(x^2-1\right)}{4x+1}+\frac{2\left(1-x^2\right)}{x}-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{3}{4x+1}-\frac{2}{x}-1\right)=0\)
TH1: \(x^2-1=0\Rightarrow x=\pm1\)
TH2: \(\frac{3}{4x+1}-\frac{2}{x}-1=0\Leftrightarrow3x-2\left(4x+1\right)-x\left(4x+1\right)=0\)
\(\Leftrightarrow4x^2+6x+2=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\frac{2^{3x^2-3x+1}}{3^{x^2-x+1}}.\frac{3^{2x^2-3x+2}}{5^{2x^2-3x+2}}.\frac{5^{3x^2-4x+3}}{7^{3x^2-4x+3}}.\frac{7^{4x^2-5x+4}}{2^{4x^2-5x+4}}=210^{\left(x-1\right)^2}\)
\(\Leftrightarrow\frac{\left(3.5.7\right)^{x^2-x+1}}{2^{x^2-2x+1}}=2^{\left(x-1\right)^2}.\left(3.5.7\right)^{\left(x-1\right)^2}\)
\(\Leftrightarrow105^x=2^{2\left(x-1\right)^2}\)
Lấy Logarit cơ số 2 hai vế, ta được :
\(2\left(x-1\right)^2=\left(\log_2105\right)x\)
\(\Leftrightarrow2x^2-\left(4+\log_2105\right)x+2=0\)
\(\Leftrightarrow x=\frac{\left(2+\log_2105\right)\pm\sqrt{\log^2_2105+8\log_2105}}{4}\)
Vậy phương trình đã cho có 2 nghiệm
Lời giải:
Đặt $x^2+4x+3=m$.
$m+1=x^2+4x+4=(x+2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow m\geq -1$
Ta có:
$(x^2+4x+3)(x^2+4x+6)=m(m+3)=(m+1)^2+m-1\geq m-1\geq -1-1=-2$
Vậy $(x^2+4x+3)(x^2+4x+6)\geq -2$ với mọi $x\in\mathbb{R}$
Để BPT đã cho đúng với mọi $x$ thì $a=-2$
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)
Trừ vế cho vế:
\(\left(2x^2+y\right)\left(x+y\right)-2x^2-y=0\)
\(\Leftrightarrow\left(2x^2+y\right)\left(x+y-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-2x^2\\y=1-x\end{matrix}\right.\)
Thế xuống pt dưới ...
TH1: x<-3/4
=>-4x-3-(1-x)=7
=>-4x-3-1+x=7
=>-3x-4=7
=>-3x=11
=>x=-11/3(nhận)
TH2: -3/4<=x<1
=>4x+3-(1-x)=7
=>4x+3-1+x=7
=>5x+2=7
=>x=1(loại)
TH3: x>=1
=>4x+3-x+1=7
=>3x+4=7
=>x=1(nhận)