K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

\(\Rightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

\(\Rightarrow\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x-1\right)^{20}=0\\\left[\left(4x-1\right)^{10}-1\right]=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\\left(4x-1\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=1\\4x-1=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\4x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{2}{4}=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{1}{4}\right\}\)

20 tháng 1 2020

\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

\(\Rightarrow\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

\(\Rightarrow\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x-1=0\\\left(4x-1\right)^{10}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4x=1\\4x-1=1\\4x-1=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\4x=2\\4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{1}{2}\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{4};\frac{1}{2};0\right\}.\)

Chúc bạn học tốt!

20 tháng 1 2020

mình biết nè giải như sau

            [4x-1]^30=[4x-1]^20

            [4x-1]^30-[4x-1]^20=0 ....

còn lại bạn tự giải nhé

       

           

20 tháng 1 2020

\(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x=1\\4x-1\in\left\{\pm1\right\}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\4x\in\left\{0;2\right\}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x\in\left\{0;\frac{1}{2}\right\}\end{cases}}\)

Vậy ...

                                         Học tốt

15 tháng 12 2017

Ta có:

\(\left(4x-5\right)\left(4x+1\right)-4\left(x-1\right)\left(x+1\right)=7\)

\(\Rightarrow16x^2-16x-5-4\left(x^2-1\right)=7\)

\(\Rightarrow16x^2-16x-5-4x^2+4=7\)

\(\Rightarrow12x^2-16x=8\)

\(\Rightarrow3x^2-4x=2\)

\(\Rightarrow3\left(x^2-2.\frac{2}{3}.x+\left(\frac{2}{3}\right)^2\right)=2\)

\(\Rightarrow\left(x-\frac{2}{3}\right)^2=\frac{2}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{2}{3}}\\x-\frac{2}{3}=-\sqrt{\frac{2}{3}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{2}{3}}+\frac{2}{3}\\x=\frac{2}{3}-\sqrt{\frac{2}{3}}\end{cases}}\)

15 tháng 12 2017

\(\left(4x+1\right)\left(x-3\right)-\left(x-7\right)\left(4x-1\right)=15\)

\(4x^2-11x-3-\left(4x^2-29x+7\right)=15\)

\(4x^2-11x-3-4x^2+29x-7=15\)

\(18x-10=15\)

\(x=\frac{25}{18}\)

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:
a)

\((4x-1)^2+(3x+1)^2+2(4x-1)(3x+1)\)

\(=(4x-1)^2+2(4x-1)(3x+1)+(3x+1)^2\)

\(=[(4x-1)+(3x+1)]^2=(7x)^2=49x^2\)

b)

\((x^2+2)(x-5)+(x-5)(x^2+5x+25)\)

\(=(x-5)[(x^2+2)+(x^2+5x+25)]\)

\(=(x-5)(2x^2+5x+27)\)

31 tháng 10 2018

|5x-3| - 3x = 7

*Nếu \(x\ge\frac{3}{5}\)

5x - 3 - 3x = 7

2x = 10

x = 5 ( tm)

*Nếu \(x< \frac{3}{5}\)

3 - 5x - 3x = 7

-8x = 4 

x = \(-\frac{1}{2}\)( tm )

Làm hơi khó nhìn , thông cảm. Mệt rùi :)

31 tháng 10 2018

|x - 3| + |x - 5| - 4x = -28

*Nếu x < 3

3 - x + 5 - x - 4x = -28

-6x = -36

x = 6 ( loại do ko tm khoảng đang xét )

* nếu 3 < x < 5

x - 3 + 5 - x - 4x = -28

-4x = -30

x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )

*Nếu x > 5

x - 3 + x - 5 - 4x = -28

-2x = -20

x = 10 ( tm)

Vậy x =10

3 tháng 7 2019

a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)

=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)

=> \(\left|2-\frac{3}{2}x\right|=x+6\)

ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)

Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)

=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)

=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)

b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)

=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)

=> x = 1/4

hoặc x = 0 hoặc x = 1/2

23 tháng 11 2017

Vì \(\left(4x-1\right)^2=\left(1-4x\right)^4.\)(*)
   Đặt \(\left(4x-1\right)^2=t\) ( điều kiện \(t\ge0\)\(\Leftrightarrow1-4x=-t^2\)
nên phương trình (*) \(\Leftrightarrow t=-t^2\)
\(\Leftrightarrow t^2+t=0\)

\(\Leftrightarrow t=0\) hoặc \(t=-1\)( loại do \(t\ge0\)
Ta có \(t=0\Leftrightarrow\left(4x-1\right)^2=0\Leftrightarrow4x-1=0\)
           \(\Leftrightarrow x=\frac{1}{4}\)
Vậy phương trình có 1 nghiệm \(x=\frac{1}{4}.\)