Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pk tìm GTLN chứ
Ta có: \(\left|5x+7\right|\ge0\)
\(\Rightarrow4\left|5x+7\right|\ge0\)
\(\Rightarrow4\left|5x+7\right|+24\ge24\)
\(\Rightarrow\frac{-8}{4\left|5x+7\right|+24}\le\frac{-1}{3}\)
\(\Rightarrow5+\frac{-8}{4\left|5x+7\right|+24}\le\frac{14}{3}\)
Vậy Amax\(=\frac{14}{3}\Leftrightarrow5x+7=0\Leftrightarrow x=\frac{-7}{5}\)
ko ghi lại đề
\(C=\frac{-15|x+7|}{3|x+7|}\)
\(C=\frac{-15}{3}+\frac{-68}{12}\)
\(C=\frac{-15}{3}+\frac{-17}{3}\)
\(C=\frac{-32}{3}\)
Vì bài dài quá nên mình làm một bài rồi bạn tự làm như vậy nha ! Vì đề này cũng tương tự nhau cả nha bạn !
Nhưng mình không chắc lắm ! Bài này rối quá !
\(\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\)
Biểu thức trên đạt GTLN khi \(\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\) đạt GTLN
\(\Leftrightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|+8\) nhỏ nhất
\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\) phải nhỏ nhất vì \(\text{ }\left|3x+5\right|\ge0\text{ và }\left|4y+5\right|\ge0\) nên khi cộng với 8 mới có GTNN
Ta có : \(\left|3x+5\right|\ge3x+5\) . Dấu " = " xảy ra khi \(3x+5\ge0\) \(\Rightarrow\text{ }3x\ge-5\) \(\Rightarrow\text{ }x\ge-\frac{5}{3}\)
\(\left|4y+5\right|\ge4y+5\).. Dấu " = " xảy ra khi \(4y+5\ge0\) \(\Rightarrow\text{ }4y\ge-5\) \(\Rightarrow\text{ }y\ge-\frac{5}{4}\)
Mà \(\left|3x+5\right|+\left|4y+5\right|\) nhỏ nhất \(\Rightarrow\text{ }x,y\text{ nhỏ nhất }\)
Vậy \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\)
\(\Rightarrow\text{ }\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+5\right)+\left(4y+5\right)\)
\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3x+4y\right)+10\)
Thay \(x=-\frac{5}{3}\) , \(y=-\frac{5}{4}\) vào vế phải của biểu thức ta được :
\(\left|3x+5\right|+\left|4y+5\right|\ge\left(3\cdot\frac{-5}{3}+4\cdot\frac{-5}{4}\right)+10\)
\(\left|3x+5\right|+\left|4y+5\right|\ge\left(-5+\left(-5\right)\right)+10\)
\(\left|3x+5\right|+\left|4y+5\right|\ge0\)
Vậy min \(\left|3x+5\right|+\left|4y+5\right|=0\)
\(\Rightarrow\text{ min }\left|3x+5\right|+\left|4y+5\right|+8=8\)
\(\Rightarrow\text{ }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}\le\frac{4}{5}+\frac{20}{8}=\frac{33}{10}\)
\(\Rightarrow\text{ Max }\frac{4}{5}+\frac{20}{\left|3x+5\right|+\left|4y+5\right|+8}=\frac{33}{10}\)
Làm mẫu
a) Ta có: \(\left|3x+7\right|\ge0\)
\(\Leftrightarrow4\left|3x+7\right|\ge0\)
\(\Leftrightarrow4\left|3x+7\right|+3\ge3\)
\(\Leftrightarrow\frac{15}{4\left|3x+7\right|+3}\le5\)
\(\Leftrightarrow5+\frac{15}{4\left|3x+7\right|+3}\le10\)
Vậy GTLN của bt là 10\(\Leftrightarrow x=\frac{-7}{3}\)
a) (−2).3....> hoặc \(\ge\).....(−2).5(−2).3.........(−2).5
b) 4.(−2)...< hoặc \(\le\)....(−7).(−2)4.(−2).......(−7).(−2)
c) (−6)2+2....\(\le\) hoặc \(\ge\)....36+2(−6)2+2........36+2
d) 5.(−8).....> hoặc \(\ge\).....135.(−8)
a)ta có:(-2).3=-6 ; (-2).5=-10
Vì -6>-10 nên (-2).3>(-2).5
b)Ta có:4.(-2)=-8 ; (-7).(-2)=14
vì -8<14 nên 4.(-2)<(-7).(-2)
c)Ta có:(-6)2+2=36+2=38 ; 36+2=38
Vì 38=38 nên (-6)2+2=36+2
d)Ta có:5.(-8)=-40 ; 135.(-8)=-1080
Vì -40>-1080 nên 5.(-8) > 135.(-8)
1: =>2x-5=4 hoặc 2x-5=-4
=>2x=9 hoặc 2x=1
=>x=9/2hoặc x=1/2
2: \(\Leftrightarrow\left|2x+1\right|=\dfrac{3}{4}-\dfrac{7}{8}=\dfrac{-1}{8}\)(vô lý)
3: \(\Leftrightarrow\left|5x-3\right|=x+5\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(5x-3-x-5\right)\left(5x-3+x+5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-5\\\left(4x-8\right)\left(6x+2\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{2;-\dfrac{1}{3}\right\}\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
1: =>3x+1=4
=>3x=3
hay x=1
2: \(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^9}{98^3}=\dfrac{1}{2^3}+\dfrac{7^9}{7^6\cdot2^3}\)
\(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^3}{2^3}=\dfrac{344}{2^3}\)
\(\Leftrightarrow x^2=\dfrac{1}{4}\)
=>x=1/2 hoặc x=-1/2
3: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\x-\dfrac{2}{9}=-\dfrac{4}{9}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{9}\end{matrix}\right.\)
4: =>x+2=0 và y-1/10=0
=>x=-2 và y=1/10
= 16 - 40 + 25 - ( 216 + 756 + 882 + 343 )
= 16 - 40 + 25 - 216 - 756 - 882 - 343
= -2196
tk mik nha
=1-13^3
=1^3-13^3(hằng đẳng thức)