K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

ĐKXĐ \(\orbr{\begin{cases}x\ge-1\\x\le-\frac{3}{2}\end{cases}}\)

PT

<=> \(4x^2+10x+9=5\sqrt{2x^2+5x+3}\)

<=> \(2\left(2x^2+5x+3\right)-5\sqrt{2x^2+5x+3}+3=0\)

Đặt \(2x^2+5x+3=t\)

=> \(2t^2-5t+3=0\)

<=> \(\orbr{\begin{cases}t=1\\t=\frac{3}{2}\end{cases}}\)

+ t=1

=> \(2x^2+5x+2=0\)=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=-2\end{cases}}\)

+ t=3/2

=> \(2x^2+5x+\frac{3}{2}=0\)=> \(x=\frac{-5\pm\sqrt{13}}{4}\)

Kết hợp với ĐKXĐ

\(S=\left\{\frac{-5\pm\sqrt{13}}{4};-2;-\frac{1}{2}\right\}\)

a: ĐKXĐ: \(\left[{}\begin{matrix}x>=2\\x< =-3\end{matrix}\right.\)

\(\sqrt{\left(x-2\right)\left(x+3\right)}=5\)

=>\(\sqrt{x^2+x-6}=5\)

=>\(x^2+x-6=25\)

=>\(x^2+x-31=0\)

=>\(\left[{}\begin{matrix}x=\dfrac{-1+5\sqrt{5}}{2}\left(nhận\right)\\x=\dfrac{-1-5\sqrt{5}}{2}\left(nhận\right)\end{matrix}\right.\)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{\left(2x+3\right)^2}=x-5\)

=>\(\left|2x+3\right|=x-5\)

=>\(\left\{{}\begin{matrix}x>=5\\\left(2x+3\right)^2=\left(x-5\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=5\\\left(2x+3-x+5\right)\left(2x+3+x-5\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=5\\\left(x+8\right)\left(3x-2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=5\\\left[{}\begin{matrix}x=-8\left(loại\right)\\x=\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

=>\(x\in\varnothing\)

c: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-6x+9}=x+7\)

=>\(\sqrt{\left(x-3\right)^2}=x+7\)

=>\(\left|x-3\right|=x+7\)

=>\(\left\{{}\begin{matrix}x+7>=0\\\left(x-3\right)^2=\left(x+7\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-7\\\left(x-3-x-7\right)\left(x-3+x+7\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-7\\-10\left(2x+4\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-7\\x+2=0\end{matrix}\right.\)

=>x=-2

d: ĐKXĐ: x>=3/2

\(\sqrt{2x-3}=x-1\)

=>\(\left\{{}\begin{matrix}2x-3=\left(x-1\right)^2\\x>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-2x+1=2x-3\\x>=\dfrac{3}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-4x+4=0\\x>=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x>=\dfrac{3}{2}\end{matrix}\right.\)

=>x=2

30 tháng 8 2021

a, \(\sqrt{\left(2x+3\right)^2}=x+1\)

\(\Leftrightarrow\left|2x+3\right|=x+1\)

TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.

Vậy phương trình vô nghiệm.

TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.

30 tháng 8 2021

b, 

a, \(\sqrt{\left(2x-1\right)^2}=x+1\)

\(\Leftrightarrow\left|2x-1\right|=x+1\)

TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)

TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)

1 tháng 10 2021

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

1 tháng 10 2021

ghê thậc, còn cái còn lại thì seo?

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

26 tháng 6 2021

a)đk:`2x-4>=0`

`<=>2x>=4`

`<=>x>=2.`

b)đk:`3/(-2x+1)>=0`

Mà `3>0`

`=>-2x+1>=0`

`<=>1>=2x`

`<=>x<=1/2`

c)`đk:(-3x+5)/(-4)>=0`

`<=>(3x-5)/4>=0`

`<=>3x-5>=0`

`<=>3x>=5`

`<=>x>=5/3`

d)`đk:-5(-2x+6)>=0`

`<=>-2x+6<=0`

`<=>2x-6>=0`

`<=>2x>=6`

`<=>x>=3`

e)`đk:(x^2+2)(x-3)>=0`

Mà `x^2+2>=2>0`

`<=>x-3>=0`

`<=>x>=3`

f)`đk:(x^2+5)/(-x+2)>=0`

Mà `x^2+5>=5>0`

`<=>-x+2>0`

`<=>-x>=-2`

`<=>x<=2`

26 tháng 6 2021

a, ĐKXĐ : \(2x-4\ge0\)

\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)

Vậy ..

b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)

\(\Leftrightarrow-2x+1>0\)

\(\Leftrightarrow x< \dfrac{1}{2}\)

Vậy ..

c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)

\(\Leftrightarrow-3x+5\le0\)

\(\Leftrightarrow x\ge\dfrac{5}{3}\)

Vậy ...

d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)

\(\Leftrightarrow-2x+6\le0\)

\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)

Vậy ...

e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)

\(\Leftrightarrow x-3\ge0\)

\(\Leftrightarrow x\ge3\)

Vậy ...

f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow-x+2>0\)

\(\Leftrightarrow x< 2\)

Vậy ...

NV
14 tháng 1 2021

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

NV
14 tháng 1 2021

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)

\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)

NV
26 tháng 2 2021

2.

ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)

\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)

\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)

\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)

\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)

\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)