Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-5\right)^3=8\)
\(\left(2x-5\right)^3=2^3\)
\(2x-5=2\)
\(2x=2+5\)
\(2x=7\)
\(x=7\div2\)
\(x=3,5\)
\(\left(2x+1\right).y=5\)
\(\Rightarrow2x+1;y\inƯ\left(5\right)=\left\{1;5\right\}\)
\(TH1:\hept{\begin{cases}2x+1=1\\y=5\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
\(TH2:\hept{\begin{cases}2x+1=5\\y=1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy....................
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)
\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)
\(\frac{2x+2}{2x+3}=\frac{98}{99}\)
=) \(2x+2=98\)và \(2x+3=99\)
TH1 : \(2x+2=98\)
\(2x=98-2\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
TH2 :
\(2x+3=99\)
\(2x=99-3\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
Vậy x = 48
a) \(3\left(x+\frac{1}{2}\right)=8\)
\(\Rightarrow x+\frac{1}{2}=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}-\frac{1}{2}\)
\(\Rightarrow x=\frac{13}{6}\)
b) \(4x+\frac{1}{2}^3=-7\)
\(\Rightarrow4x+\frac{1}{8}=-7\)
\(\Rightarrow4x=-7-\frac{1}{8}\)
\(\Rightarrow4x=-\frac{57}{8}\)
\(\Rightarrow x=-\frac{57}{8}:4\)
\(\Rightarrow x=\frac{1}{32}\)
c) \(4\left(x-\frac{1}{2}\right)+\left(-3\right)^2=9\)
\(\Rightarrow4\left(x-\frac{1}{2}\right)+9=9\)
\(\Rightarrow4\left(x-\frac{1}{2}\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
tíc mình nha
a) \(\left|2x-3\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=5\\2x-3=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=3\end{matrix}\right.\)
*\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\Leftrightarrow\frac{1}{3}\cdot\frac{1}{2x-1}=-5-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3\left(2x-1\right)}=\frac{-21}{4}\)
\(\Leftrightarrow-63\left(2x-1\right)=4\)
\(\Leftrightarrow2x-1=-\frac{4}{63}\)
\(\Leftrightarrow2x=\frac{59}{63}\)
\(x=\frac{59}{126}\)
\(\left(2x+1\right)^3=\left(2x+1\right)^{99}.\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\2x+1=1\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=0\end{cases}}}\)
Vậy \(x=\orbr{\begin{cases}-\frac{1}{2}\\0\end{cases}}\)