K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

\(\left(2x-3\right)^2=\left|3-2x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=3-2x\\2x-3=2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=6\\0x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\\text{vô số nghiệm}\end{cases}}}\)

Vậy \(S=\left\{x\in R\right\}\)

24 tháng 2 2020

NX: 2x+3; 5(2x+3) và 2(2x+3)  cùng dấu

+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)

=> 5(2x+3), 2(2x+3) \(\ge\)0

=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3

=> (2x+3)(5+2+1) = 16

=> 2x+3 = 2

=> 2x = -1

=> x = -1/2 (t/m)

+ TH2: 2x+3 < 0 => x < -3/2

cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16

=> (2x+3)(-5-2-1) = 16

=> 2x+3 = -2

=> 2x = -5

=> x = -5/2 (t/m)

24 tháng 2 2020

/8(2x+3/ = 16

/2x+3/=2

2x+3=2 hoặc 2x+3=-2

2x=-1 hoặc 2x=-5

x=-1/2 hoặc x=-5/2

bạn trả lời nhé

20 tháng 12 2020

giúp mik với

 

 

 

9 tháng 10 2021

ăn hại hiha

12 tháng 11 2017

b) \(\left(2x+3\right)^6-\left(2x+3\right)^4=0\)

\(\left(2x+3\right)^4.\left[\left(2x+3\right)^2-1\right]=0\)

\(\left(2x+3\right)^4.\left(2x+3-1\right)\left(2x+3+1\right)=0\)

\(\left(2x+3\right)^4.\left(2x+2\right)\left(2x+4\right)=0\)

\(\Rightarrow\left(2x+3\right)^4=0\)  hoac  \(\orbr{\begin{cases}2x+2=0\\2x+4=0\end{cases}}\)

\(\Rightarrow2x+3=0\)  hoac  \(\orbr{\begin{cases}2x=-2\\2x=-4\end{cases}}\)

\(\Rightarrow x=\frac{-3}{2}\) hoac \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

       vay \(x=\frac{-3}{2}\) hoac \(\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

\(VP=\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)

\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\left(1\right)\\\left(x+1\right)^2=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(x=-1\) ( thỏa mãn\(\left(1\right)\) ) 

... 

\(\Leftrightarrow x^2-6x+9-4x^2-4x-1-2\left(x^2+x-2\right)=3\left(x-3\right)-\left(4x^2+8x-x-2\right)\)

\(\Leftrightarrow-3x^2-10x+8-2x^2-2x+4=3\left(x-3\right)-4x^2-7x+2\)

\(\Leftrightarrow-5x^2-12x+12=3x-9-4x^2-7x+2\)

\(\Leftrightarrow-5x^2-12x+12=-4x^2-4x-7\)

\(\Leftrightarrow-4x^2-4x-7+5x^2+12x-12=0\)

\(\Leftrightarrow x^2+8x-19=0\)

\(\text{Δ}=8^2-4\cdot1\cdot\left(-19\right)=76+64=140\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-8-2\sqrt{35}}{2}=-4-\sqrt{35}\\x_2=-4+\sqrt{35}\end{matrix}\right.\)

11 tháng 12 2018

a)\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)

\(=\left(2x+1-2x+1\right)^2\)

\(=2^2=4\)

b)\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-3x^2+3x-1-x^3+8+3x^2-3\)

\(=3x+4\)

6 tháng 12 2023

\(a,1-3\left|2x-3\right|=-\dfrac{1}{2}\\ 3\left|2x-3\right|=1+\dfrac{1}{2}\\ 3\left|2x-3\right|=\dfrac{3}{2}\\ \left|2x-3\right|=\dfrac{3}{2}:3\\ \left|2x-3\right|=\dfrac{9}{2}\\ \Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{9}{2}\\2x-3=-\dfrac{9}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=\dfrac{15}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy `x in {15/4;-3/4}`

\(b,\left(\left|x\right|-0,2\right)\left(x^3-8\right)=0\\ \left(\left|x\right|-0,2\right)\left(x-2\right)\left(x^2+2x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|-0,2=0\\x-2=0\\x^2+2x+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left|x\right|=0,2\\x=2\\\left(x+1\right)^2+3=0\left(lọai\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0,2\\x=-0,2\\x=2\end{matrix}\right.\)

Vậy `x in {+-0,2;2}`