Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) \(\left(5x+1\right)^2=\frac{36}{49}\Leftrightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\Leftrightarrow5x+1=\frac{6}{7}\Leftrightarrow5x=-\frac{1}{7}\Leftrightarrow x=-\frac{1}{35}\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\Leftrightarrow\left(x-\frac{2}{9}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\Leftrightarrow x-\frac{2}{9}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\Leftrightarrow x=\frac{2}{3}\)
c) \(\left(8x-1\right)^{2x+1}=5^{2x+1}\Leftrightarrow8x-1=5\Leftrightarrow8x=6\Leftrightarrow x=\frac{6}{8}\)
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\frac{6^2}{7^2}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\frac{6}{7}\)
\(5x=\frac{6}{7}-1\)
\(5x=\frac{6}{7}-\frac{7}{7}\)
\(5x=-\frac{1}{7}\)
\(x=-\frac{1}{7}\div5\)
\(x=-\frac{1}{7}\times\frac{1}{5}\)
\(x=-\frac{1}{35}\)
Vậy \(x=-\frac{1}{35}\)
a) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x-3\right)\left(x+3\right)=36\)
\(\Leftrightarrow3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\)
\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\)
\(\Leftrightarrow8x+76=36\)
\(\Leftrightarrow8x=-40\)
\(\Leftrightarrow x=-5\)
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
1) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)
\(\Leftrightarrow-\frac{\frac{2x}{3}-3}{10}=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{\frac{2x}{3}}{10}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{2x}{3\times10}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\left(\frac{2x}{30}-\frac{3}{10}\right)=\frac{2}{5}\)
\(\Leftrightarrow-\frac{x}{15}+\frac{3}{10}=\frac{2}{5}\)
\(\Leftrightarrow\frac{3}{10}-\frac{x}{15}=\frac{2}{5}\)
\(\Leftrightarrow-\frac{x}{15}=\frac{2}{5}-\frac{3}{10}\)
\(\Leftrightarrow-\frac{x}{15}=\frac{1}{10}\)
\(\Leftrightarrow-x=\frac{15}{10}\)
\(\Leftrightarrow-x=\frac{3}{2}\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Vậy \(x=-\frac{3}{2}\)
2) \(\left|2x-1\right|+1=4\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
Vậy \(x\in\left\{2;-1\right\}\)
\(\left(2x-3\right)^2=36\)
\(\Leftrightarrow\left(2x-3\right)^2=6^2\)
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow2x=9\)
\(\Leftrightarrow x=\frac{9}{2}\)
Tìm x biết:
(2x−3)2= 36
=>(2x-3)2=62
=>2x-3=6
2x=9
x=9:2
x=4,5
Vậy x=4,5
Ta có :
\(36=6^2\)
\(\Rightarrow\left(2x-3\right)^2=6^2\)
\(\Rightarrow\left(2x-3\right)=3\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
:)
(2x -3) 2 = 36
(2x - 3)2 = 62
=> 2x - 3 = 6
=> 2x = 9
=> x = 9 : 2
=> x = 9/2 = 4,5