\(\left|2mx+m-1\right|=x-1\)

Tìm m để : a) PT có nghiệm

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

a)  \(\left(1\right)\)    \(\Leftrightarrow\)      \(\left(m^2-9\right)x=m^2-4m+3\)\(=\left(m-1\right)\left(m-3\right)\)

Phương trình  \(\left(1\right)\) có tập nghiệm là R

             \(\Leftrightarrow\)      \(m^2-9=\left(m-1\right)\left(m-3\right)=0\)   \(\Leftrightarrow m=3\)

b) Phương trình có nghiệm duy nhất :  \(\Leftrightarrow m^2-9\ne0\)    \(\Leftrightarrow m\ne\pm3\)

Khi đó nghiệm của phương trình :  \(x=\frac{m-1}{m-3}=1-\frac{4}{m+3}\)

Do đó \(x\in Z\) \(\Leftrightarrow\frac{4}{m+3}\in Z\)               \(\Leftrightarrow m+3\in\left\{\pm1;\pm2;\pm4\right\}\)

                                                   \(\Leftrightarrow m\in\left\{-7;-5;-4;-2;-1;1\right\}\)

2 tháng 3 2016

khó

Câu 1: 

a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+49-2x-1=0\\x< =7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-16x+48=0\\x< =7\end{matrix}\right.\Leftrightarrow x=4\)

Câu 2: 

\(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot4=4m^2-16\)

Để phương trình có hai nghiệm thì (m-2)(m+2)>=0

=>m>=2 hoặc m<=-2

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=4\end{matrix}\right.\)

\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1+2x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow4m^2+4m-8=0\)

=>(m+2)(m-1)=0

=>m=-2(nhận) hoặc m=1(loại)

31 tháng 5 2019

x4-2mx2+(m2-1)=0(*)

Đặt t=x2(t>=0)

PT trở thành: t2-2mt+(m2-1)=0 (1)

Để pt(*) có 3 nghiệm thì pt(1) có 1 nghiệm dương khác 0 và 1 nghiệm =0

=>m2-1=0<=>m=1 hoặc m=-1

với m=1 pt(1) có hai nghiệm t=0 hoặc t=2 (nhận)

với m=-1 pt(1) có hai nghiệm t=0 hoặc t=-2 (loại)

vậy m=1

31 tháng 5 2019

ohhhhhh tks man

AH
Akai Haruma
Giáo viên
20 tháng 2 2018

Lời giải:

Để cho gọn, đặt \(x^2=t(t\geq 0)\)

PT trở thành:

\((m-2)t^2-2(m+1)t+(2m-1)=0(*)\)

a) Để PT đã cho vô nghiệm thì thì \(\Delta'\) âm hoặc \((*)\) có nghiệm âm.

----------------------------

\(\Delta'=(m+1)^2-(m-2)(2m-1)<0\)

\(\Leftrightarrow -m^2+7m-1<0\)

\(\Leftrightarrow m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)

PT \((*)\) có nghiệm âm khi mà:

\(\left\{\begin{matrix} \Delta'=-m^2+7m-1\geq 0\\ t_1+t_2=\frac{2(m+1)}{m-2}<0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow \frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\)

Vậy để PT vô nghiệm thì \(\frac{1}{2}>m\geq \frac{7-3\sqrt{5}}{2}\) , \(m< \frac{7-3\sqrt{5}}{2}\) hoặc \(m> \frac{7+3\sqrt{5}}{2}\)

b) Để PT đã cho có nghiệm duy nhất thì (*) có nghiệm duy nhất. Với nghiệm \((*)\) thu được duy nhất là \(t=k\geq 0\), nếu \(k\neq 0\Rightarrow \) PT đã cho có 2 nghiệm \(\pm \sqrt{k}\) (không thỏa mãn).

Do đó nếu PT đã cho có nghiệm duy nhất thì nghiệm đó phải là 0

\(\Rightarrow (m-2).0^4-2(m+1).0^2+2m-1=0\Leftrightarrow m=\frac{1}{2}\)

Thay vào thử lại thấy thỏa mãn.

Vậy \(m=\frac{1}{2}\)

c) Để PT đã cho có hai nghiệm thì \((*)\) có duy nhất một nghiệm dương, nghiệm còn lại âm. Khi đó:

\(\Delta'=-m^2+7m-1>0\) (1)

Và: \(t_1t_2<0\Leftrightarrow \frac{2m-1}{m-2}<0\Leftrightarrow \frac{1}{2}< m< 2\) (2)

Kết hợp (1); (2) suy ra \(\frac{1}{2}< m< 2\)

d)

PT ban đầu có ba nghiệm khi mà $(*)$ có một nghiệm bằng 0 và một nghiệm còn lại là dương.

\((*)\) có nghiệm 0 thì PT ban đầu cũng có nghiệm 0. Theo phần b ta suy ra \(m=\frac{1}{2}\). Thử lại ta thấy với \(m=\frac{1}{2}\) thì PT ban đầu có nghiệm 0 duy nhất. Do đó không tồn tại $m$ để PT có ba nghiệm.

e)

Để PT ban đầu có 4 nghiệm thì $(*)$ có hai nghiệm dương phân biệt. Điều này xảy ra khi mà:

\(\Delta'=-m^2+7m-1>0\) (1)và: \(\left\{\begin{matrix} t_1+t_2=\frac{2(m+1)}{m-2}>0\\ t_1t_2=\frac{2m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow m>2\) (2)

Từ (1); (2) suy ra \(2< m< \frac{7+3\sqrt{5}}{2}\)