Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết cho 11 thì số đó chia hết cho 11.
The đề bài ab+cd+eg chia hết cho 11
nên 10a+10c+10e+b+d+g chia hết cho 11
hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11
suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11
mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11
Vì vậy abcdeg chia hết cho 11
a.Dấu hiệu chia hết cho 11: từ trái sang phải tổng của các chữ số có vị trí lẻ trừ tngr của cá chữ số có vị trí lẻ chia hết
cho 11 thì số đó chia hết cho 11.
The đề bài ab+cd+eg chia hết cho 11
nên 10a+10c+10e+b+d+g chia hết cho 11
hay 11(a+c+e)-a-c-e+b+d+g chia hết cho 11
suy ra 11(a+c+e) - (a+c+e-b-d-g) chia hết cho 11
mà 11(a+c+e) chia hết cho 11 suy ra (a+c+e-b-d-g) chia hết cho 11
Vì vậy abcdeg chia hết cho 11
Bài 78 :
Số có tận cùng là 1 khi nâng lên lũy thừa vẫn có tận cùng là 1
Ta có : A có 10 số hạng
Vậy A = (...1) + (...1) + .... + (..1) = (...0)
A có chữ số tận cùng là 0 nên A chia hết cho 5
78/ \(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow2A=11^{10}+11^9+11^8+11^7+...+11\)
\(\Rightarrow2A\text{-}A=\left(11^{10}+11^9+11^8+11^7+...+11\right)\text{-}\left(+11^9+11^8+11^7+...+11+1\right)\)
\(A=11^{10}\text{-}1\)
\(A=\left(...1\right)\text{-}1\Rightarrow A=\left(...0\right)\)tận cùng là 0 chia hết cho 5.
b, 1028+8 chia hết cho 9
1028+8=(1027*10)+8=10009+8 chia hết cho 8
(8,9)=1 nên 1028+8 chia hết cho 27
Ta có : abcdeg = ab.10000 + cd.100 + eg
= ab.9999 + cd.99 + (ab + cd + eg)
= 99(ab.101 + cd) + (ab + cd + eg)
Vì 99(ab.101 + cd) chia hết cho 11 và (ab + cd + eg) chia hết cho 11
Vậy abcdeg chia hết cho 11
a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg
= ab . 9999 + ab + cd . 99 + cd + eg
= ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg
= (ab . 909 + cd . 9) . 11 + (ab + cd + eg)
Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11
Ta Có: 72 chia hết cho 8
Mà \(10^{28}\)+ 8 = 100....0008
Mà số cuối là 8 => \(10^{28}\)+8 chia hết cho 72
a) \(A=1+2+3^2+....+3^{11}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)
\(=\left(1+3\right)+3^2\left(1+3\right)+....+3^{10}\left(1+3\right)\)
\(=\left(1+3\right)\left(1+3^2+...+3^{10}\right)\)
\(=4\left(1+3^2+...+3^{10}\right)\)\(⋮\)\(4\)
b) \(B=16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)\(⋮\)\(33\)
c) \(C=10^{28}+8=1000...008\)(27 chữ số 0)
Nhận thấy: tổng các chữ số của C chia hết cho 9 => C chia hết cho 9
3 chữ số tận cùng của C chia hết cho 8 => C chia hết cho 8
mà (8;9) = 1 => C chia hết cho 72
d) \(D=8^8+2^{20}=2^{24}+2^{20}=2^{20}\left(2^4+1\right)=2^{20}.17\)\(⋮\)\(17\)
1028 + 8 = 100...0 (28 csố 0) + 8 = 100...08 (27 csố 0)
Vì 100...08 (27 csố 0) có 3 chữ số tận cùng là ...008 mà 008 chia hết cho 8 => 100...08 (27 csố 0) chia hết cho 8 (1)
Vì 100...08 (27 csố 0) có tổng các chữ số bằng 9 mà 9 chia hết cho 9 => 100...08 (27 csố 0) chia hết chop 9 (2)
mà (8; 9) = 1 (3)
Từ (1) (2) và (3) => 1028 + 8 chia hết cho 72
Ta có: 1028 + 8 = 100....00 ( 28 chữ số 0 ) + 8 = 100...008 ( 27 c/s 0 )
Ta thấy : 1 + 0 + 0 + .... + 0 + 8 = 9, chia hết cho 9
=> 100...08 ( 27 c/s 0 ) chia hết cho 9
Mà chữ số tận cùng là 8, chia hết cho 8
=> 100...08 ( 27 c/s 0 ) chia hết cho 8
Ta có: 72 = 8 . 9
=> 100...08 ( 27 c/s 0 ) chia hết cho 72
hay 1028 + 8 chia hết cho 72
Vậy 1028 + 8 chia hết cho 72
số 72 sẽ ko chia hêt cho tổng đó