Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)......\left(1-\dfrac{1}{780}\right)\)
= \(\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.......\dfrac{779}{780}\)
= \(\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}.....\dfrac{1558}{1560}\)
= \(\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}......\dfrac{38.41}{39.40}\)
= \(\dfrac{1.4.2.5.3.6.....38.41}{2.3.3.4.4.5...39.40}\)
= \(\dfrac{\left(1.2.3....38\right)\left(4.5.6....41\right)}{\left(2.3.4....39\right)\left(3.4.5...40\right)}\)
= \(\dfrac{1}{39}.\dfrac{41}{3}\) = \(\dfrac{41}{117}\)
\(B=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(B=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}...\dfrac{779}{780}=\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}...\dfrac{1558}{1560}\)
\(B=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}.....\dfrac{38.41}{39.40}\)
\(B=\dfrac{\left(1.2.3.....38\right)\left(4.5.6.....41\right)}{\left(2.3.4.....39\right)\left(3.4.5.....40\right)}=\dfrac{1.41}{39.3}=\dfrac{41}{117}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right).......\left(1-\dfrac{1}{10}\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\left(\dfrac{3}{3}-\dfrac{1}{3}\right).........\left(\dfrac{10}{10}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}......\dfrac{9}{10}\)
\(=\dfrac{1}{10}\)
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
Ta có:
\(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right).x=1\)
\(\Leftrightarrow\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}.x=1\)
\(\Leftrightarrow\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}.....\dfrac{1558}{1560}.x=1\)
\(\Leftrightarrow\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}.......\dfrac{38.41}{39.40}.x=1\)
\(\Leftrightarrow\dfrac{1.4.2.5.3.6.....38.41}{2.3.3.4.4.5.....39.40}.x=1\)
\(\Leftrightarrow\dfrac{\left(1.2.3.4....38\right)\left(4.5.6.7....41\right)}{\left(2.3.4.....39\right)\left(3.4.5....40\right)}.x=1\)
\(\Leftrightarrow\dfrac{1}{39}.\dfrac{41}{3}.x=1\)
\(\Leftrightarrow\dfrac{41}{117}.x=1\)
\(\Leftrightarrow x=\dfrac{117}{41}\)
Vậy ...
2.
\(\dfrac{a}{3}-\dfrac{2}{b}=\dfrac{1}{3}\)
\(\dfrac{a\times b-3\times2}{3\times b}\)\(=\dfrac{1}{3}\)
\(\dfrac{a\times b-6}{3\times b}=\dfrac{1}{3}\)
\(\Rightarrow3\times\left(a\times b-6\right)=1\times\left(3\times b\right)\)
\(3ab-18=3b\)
\(3ab-18-3b=0\)
\(3ab-3b=18\)
\(3b\left(a-1\right)=18\)
Mà \(18=1.18=2.9=3.6\)
\(\Rightarrow3b\left(a-1\right)=1.18=2.9=3.6\)
còn lại bạn tự làm các trường hợp ra nhé,mk lười lắm
\(T=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{8}\right)\left(1-\dfrac{1}{10}\right)\)\(\Rightarrow T=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}.\dfrac{8}{9}.\dfrac{10}{11}.\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}.\dfrac{9}{10}\)
\(\Rightarrow=\dfrac{1}{11}\)
\(\Rightarrow\) Số nghịch đảo của T là \(11\)
a) \(\left(\dfrac{2}{3}-\dfrac{1}{2}-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}-\dfrac{1}{7}\right)\)
\(=-\dfrac{1}{6}\cdot\dfrac{17}{28}\)
\(=-\dfrac{17}{168}\)
b) \(\left(\dfrac{15}{21}\div\dfrac{5}{7}\right)\div\left(\dfrac{6}{5}\div2\right)\)
\(=1\div\dfrac{3}{5}\)
\(=\dfrac{5}{3}\)
\(\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{6}\right).\left(1-\dfrac{1}{10}\right).\left(1-\dfrac{1}{15}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}...\dfrac{779}{780}\)
\(=\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}...\dfrac{1558}{1560}\)
\(=\dfrac{4.10.18...1558}{6.12.20...1560}\)
\(=\dfrac{41}{39}.3\)
\(=\dfrac{41}{11}\)