Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)
Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0
=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5
=> VT \(⋮\)5
Mà 11879 không chia hết cho 5
=> không tồn tại x,y thỏa mãn
a,Chịu
b,
⇔(x2+1)(x+1)=(2y+1)2⇔(x2+1)(x+1)=(2y+1)2
Dễ chứng minh x2+1x2+1 và x+1x+1 nguyên tố cùng nhau, do đó x2+1x2+1 và x+1x+1 đều là số chính phương, mặt khác x2x2 và x2+1x2+1 là hai số nguyên liên tiếp, nên x=0x=0, tới đây thay vào phương trình ban đầu
Ta có :
\(<=> (x-1)(2-y)-(x-1)(y-2) = 0 \\ <=> (x-1)[2-y-(y-2)] = 0 \\ <=> (x-1)[2-y-y+2] = 0 \\ <=> (x-1)(-2y+4) = 0 \\ => \Bigg[ \begin{matrix} x-1=0\ (1)\\ -2y+4=0\ (2)\\ \end{matrix}\\ Ta\ có :\ (1) <=> x=1\\ Ta\ có :\ (2) <=> -2y=-4 <=> y = 2\\ Vậy\ x = 1,\ y=2. \)
Đó là bài giải, cảm ơn bạn đã cho câu hỏi khó đó!
Chúc bạn học tốt!
Vì \(\left(\frac{1}{2}x-5\right)^{10}\ge0\)và \(\left(y^2-\frac{1}{4}\right)^{20}\ge0\)
nên \(\left(\frac{1}{2}x-5\right)^{10}+\left(y^2-\frac{1}{4}\right)^{20}=0\)
<=>\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)<=>\(\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)
Ta có:\(\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}\ge0\forall x\\\left\{y^2-\frac{1}{4}\right\}^{20}\ge0\forall y\end{cases}}\)
Mà \(\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}\le0\)
\(\Rightarrow\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}=0\\\left\{y^2-\frac{1}{4}\right\}^{20}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}\)
Vậy \(x=10;y=\pm\frac{1}{2}\)