\(\dfrac{1}{5}\)AD....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

10 tháng 11 2018

giải đi người ta t.i.c.k cho

1 tháng 8 2017

Ta gọi E là trung điểm của DC

Vì tam giác ABC có

BM = MC

DE = EC

=> BD // ME

=> DI // ME

mà tâm giac ADE có AD = DE và DI // ME nên AI = IM (đpcm)

29 tháng 6 2017

Đường trung bình của tam giác, hình thang

5 tháng 4 2020

a) Gọi E là trung điểm BK

Chứng minh được QE là đường trung bình \(\Delta\)KBC nên QE//BC => QE _|_ AB (vì BC_|_AB) và \(QE=\frac{1}{2}BC=\frac{1}{2}AD\)

Chứng minh AM=QE và AM//QE => Tứ giác AMQE là hình bình hành

Chứng minh AE//NP//MQ (3) 

Xét \(\Delta AQB\)có BK và QE là 2 đường cao của tam giác

=> E là trực tâm tam giác nên AE là đường cao thứ 3 của tam giác AE _|_ BQ

=> BQ _|_ NP

b) Vẽ tia Ax vuông góc với AF. Gọi giao Ax và CD là G

Chứng minh \(\widehat{GAD}=\widehat{BAP}\)(cùng phụ \(\widehat{PAD}\)

=> \(\Delta\)ADG ~ \(\Delta\)ABP (gg) => \(\frac{AP}{AG}=\frac{AB}{AD}=2\Rightarrow AG=\frac{1}{2}AP\)

Ta có \(\Delta\)AGF vuông tại A có AD _|_ GF nên AG.AF=AD.GF(=2SAGF)

=> \(AG^2\cdot AF^2=AD^2\cdot GF^2\left(1\right)\)

Ta chia cả 2 vế củ (1) cho \(AD^2\cdot AG^2\cdot AF^2\)

Mà \(AG^2+AF^2=GF^2\)(định lý Pytago)

\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AG^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{\left(\frac{1}{2}AB\right)^2}=\frac{1}{\left(\frac{1}{2}AP\right)^2}+\frac{1}{AF^2}\)

\(\Rightarrow\frac{4}{AB^2}=\frac{4}{AP^2}+\frac{1}{AF^2}\Rightarrow\frac{1}{AB^2}=\frac{1}{AP^2}+\frac{1}{4AF^2}\)

5 tháng 4 2020

Cảm ơn nhiều ạ!

10 tháng 8 2017

Bài Giải

Qua I và D , kẻ IN song song với BC, DM song song với BC (M,N thuộc AC).

Do tam giác ABC cân nên tam giác AMD cân  => AM=AD => AM=CE (1)

Mặt khác IN song song với BC nên IN song song với MD.

Xét với tam giác  EMD  có I là trung điểm của DE , IN song song với MD nên N là trung điểm của ME. (2)

Từ (1) và (2) => N là trung điểm của AC .

Xét tam giác ACK có N là trung điểm của AC. NI song song vs CK nên I là trung điểm của AK.

(dpcm)

Vậy............

Ủng hộ 

10 tháng 8 2017

Cho hình vẽ đi bn

Bài 1: 

Gọi G là trung điểm của BK

Xét ΔBKC có 

M là trung điểm của BC

G là trung điểm của BK

Do đó; MG là đường trung bình

=>MG//KC

hay KI//GM

Xét ΔAGM có 

I là trung điểm của AM

IK//GM

Do đó; K là trung điểm của AG

=>AK=KG=GB

=>AK=1/3AB