Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.
a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”
\( \Rightarrow A = C \cup D\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”
\( \Rightarrow B = C \cup E\)
Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách
Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách
\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
Không gian mẫu: \(C_{25}^2\)
Trong 25 thẻ có 12 thẻ chẵn, chọn 2 thẻ từ 12 thẻ chẵn: \(C_{12}^2\) cách
Xác suất: \(P=\dfrac{C_{12}^2}{C_{25}^2}=...\)
Đáp án D
Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15
Suy ra xác suất lấy được thẻ đó là 3 20 = 0 , 15 .
1.
\(\left|\Omega\right|=15\)
a, \(P\left(A\right)=\dfrac{7}{15}\)
b, \(P\left(B\right)=\dfrac{2}{5}\)
c, \(P\left(C\right)=\dfrac{3}{5}\)
2.
\(\left|\Omega\right|=C^5_{18}\)
a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)
\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)
b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.
TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.
\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)
\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)
c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.
\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)
\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)
\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)
Không gian mẫu Ω={1,2,..30}. kí hiệu A là biến cố “ thẻ lấy ra ghi số 6”, B là biến cố “thẻ lấy ra ghi số chia hết cho 5”
A={6}, n(A) =1,n(Ω) = 30
⇒P(A) =1/30
Chọn đáp án A
a.Không gian mẫu gồm 12 phần tử, được mô tả:
Ω = {(1, 2), (2; 1); (1, 3), (3; 1); (1, 4), (4; 1); (2, 3), (3; 2); (2, 4), (4; 2); (3, 4); ( 4, 3)}
Trong đó (i, j) là kết quả "lần đầu lấy trúng thẻ i và lần 2 lấy trúng thẻ j".
b.Xác định các biến cố sau:
A: "Tổng các số trên hai thẻ là số chẵn".
⇒ A = {(1, 3), (3; 1); (2, 4); (4; 2)}
B: "Tích các số trên hai thẻ là số chẵn."
⇒ B = {(1, 2), (2; 1); (1, 4), (4; 1); (2, 3), (3; 2); (2, 4),(4; 2); (3, 4); (4; 3)}
B = {5,10,15,20,25,30}, n(B) = 6
⇒P(B) =6/30 =1/5
Chọn đáp án là B
Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.
lấy ngẫu nhiên 3 thẻ đó là:n=C3/8 gọi a là biến cố tổng các số ghi trên 3 thẻ 11 là A +{1,2,8,1,3,7,1,4,6,2,3,6,2,4,5}suy ra n(A)=5/56 : bạn chú ý dấu / là phần mấy nha
Không gian mẫu là lấy ngẫu nhiên 3 thẻ trong 8 thẻ có:
n(Ω)=C38n(Ω)=C83
Gọi A là biến cố: “Tổng các số ghi trên ba thẻ đó bằng 11”.
A=(1,2,8;1,3,7;1,4,6;2,3,6;2,4,5)A=(1,2,8;1,3,7;1,4,6;2,3,6;2,4,5)
⇒n(A)=5⇒n(A)=5
⇒P(A)=556⇒P(A)=556