Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số A đó là abc
Theo bài ra, ta có:
abcabc:7:11:13 = abc
abcabc:1001 = abc
abcabc = abc.1001
bài toán đc chứng minh
Gọi số a là xyz, ta có b = xyzxyz = xyz . 1001
b / 7 / 11 / 13 = b / 1001 = xyzxyz / 1001 = xyz = a
Hết.
Mình có cách phân tích khác nhé :
Gọi A là \(\overline{abc}\) thì ta được : B = \(\overline{abc}.1000+\overline{abc}\)
Theo bài ra ta có :
\(\left(\overline{abc}.1000+\overline{abc}\right):7:11:13=\overline{abc}\)
\(\overline{abc}\left(1000+1\right)=\overline{abc}.7.11.13\)
\(\overline{abc}.1001=\overline{abc}.1001\)
(A=overline{abc}), (B=overline{abcabc}).Ta có:
(overline{abc}).7.11.13=(overline{abc}).1001=(overline{abcabc}) nên
(overline{abcabc}):7:11:13=(overline{abc})
Giả sử A là abc¯abc¯
=> B=abcabc¯B=abcabc¯
Ta có
abc¯.1001=abcabc¯abc¯.1001=abcabc¯
=> abc¯=abcabc¯:1001abc¯=abcabc¯:1001 (1)
Mặt khác
Giải giả thiết ta được
abcabc¯:7:11:13=abc¯abcabc¯:7:11:13=abc¯
=> abcabc¯:(7.11.13)=abc¯abcabc¯:(7.11.13)=abc¯
=> abcabc¯:1001=abc¯abcabc¯:1001=abc¯
Gọi A là abc thì B=abc.1000+abc
Theo đề bài ta có
(abc.1000+abc):7:11:13=abc
abc(1000+1)=abc.1001
abc(1000+1)=abc.1001
Vậy đó mình giải thích xong rồi suy ra B:7:11:13=A
kết quả bằng số có 3 chữ số bạn chọn ban đầu