Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Phương trình:
\(2\left(x-3\right)+1\left(y+4\right)=0\Leftrightarrow2x+y-2=0\)
2.
Phương trình tham số: \(\left\{{}\begin{matrix}x=3-3t\\y=-4+3t\end{matrix}\right.\)
3.
\(\overrightarrow{NM}=\left(4;2\right)=2\left(2;1\right)\)
\(\Rightarrow\) Đường thẳng MN nhận (2;1) là 1 vtcp và (1;-2) là 1 vtpt
Phương trình tổng quát (chọn điểm M để viết):
\(1\left(x-3\right)-2\left(y-4\right)=0\Leftrightarrow x-2y+5=0\)
Phương trình tham số: \(\left\{{}\begin{matrix}x=3+2t\\y=4+t\end{matrix}\right.\)
Bài 2:
a: VTPT là (-1;4)
PTTQ là:
-1(x+3)+4(y-2)=0
=>-x-3+4y-8=0
=>-x+4y-11=0
=>x-4y+11=0
b: Phương trình tổng quát là:
3(x+5)+2(y-2)=0
=>3x+15+2y-4=0
=>3x+2y+11=0
c: vecto CD=(4;3)
=>VTPT là (-3;4)
PTTQ là:
-3(x-5)+4(y-3)=0
=>-3x+15+4y-12=0
=>-3x+4y+3=0
\(A\left(2;0\right);B\left(0;-7\right)\)
\(\Rightarrow\overrightarrow{BA}=\left(2;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(7;-2\right)\) là 1 vtpt
Phương trình AB:
\(7\left(x-2\right)-2\left(y-0\right)=0\Leftrightarrow7x-2y-14=0\)
a/ Trục Ox nhận \(\left(1;0\right)\) là 1 vtcp
Gọi đường thẳng cần tìm là d', do d' vuông góc \(Ox\Rightarrow\) d' nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=-1\\y=2+t\end{matrix}\right.\)
Không tồn tại ptct của d'
Pt tổng quát: \(1\left(x+1\right)+0\left(y-2\right)=0\Leftrightarrow x+1=0\)
b/ Mình viết pt một cạnh, 1 đường cao và 1 đường trung tuyến, phần còn lại tương tự bạn tự làm:
\(\overrightarrow{AB}=\left(2;-5\right)\Rightarrow\) đường thẳng AB nhận \(\left(5;2\right)\) là 1 vtpt
Phương trình AB:
\(5\left(x-1\right)+2\left(y-4\right)=0\Leftrightarrow5x+2y-13=0\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{9}{2};\frac{1}{2}\right)\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};-\frac{7}{2}\right)=\frac{7}{2}\left(1;-1\right)\)
\(\Rightarrow\) Đường thẳng AM nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình trung tuyến AM:
\(1\left(x-1\right)+1\left(y-4\right)=0\Leftrightarrow x+y-5=0\)
Gọi CH là đường cao tương ứng với AB, do CH vuông góc AB nên đường thẳng CH nhận \(\left(2;-5\right)\) là 1 vtpt
Phương trình CH:
\(2\left(x-6\right)-5\left(y-2\right)=0\Leftrightarrow2x-5y-2=0\)
a/ Đường thẳng d nhận \(\left(5;0\right)\) là 1 vtpt nên cũng nhận \(\left(1;0\right)\) là 1 vtpt và \(\left(0;1\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=1\\y=2+t\end{matrix}\right.\)
Không tồn tại pt chính tắc
Pt tổng quát: \(1\left(x-1\right)+0\left(y-2\right)=0\Leftrightarrow x-1=0\)
b/ Đường thẳng nhận \(\left(2;5\right)\) là 1 vtpt nên nhận \(\left(5;-2\right)\) là 1 vtcp
Pt tham số: \(\left\{{}\begin{matrix}x=5t\\y=-2t\end{matrix}\right.\)
Pt chính tắc: \(\frac{x}{5}=\frac{y}{-2}\)
Pt tổng quát: \(2x+5y=0\)