K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

Gọi giao điểm của hai đường thắng y = -x+5 và y = 2x - 3 là M(x1;y1)

Hoành độ giao điểm của hai đường thẳng y = -x+5 và y =2x-3 là nghiệm của phương trình  : -x + 5 = 2x - 3

=> 3x = 8

=> \(x=\dfrac{8}{3}\)

=> \(y=-\dfrac{8}{3}+5=\dfrac{7}{3}\)

=> M(\(\dfrac{8}{3};\dfrac{7}{3}\))

Đường thẳng (d) có dạng : y = ax + b (a\(\ne\)0)

Để đường thẳng (d) đi qua A(2;1) 

=> 1 = a.2 + b

=> 2a + b = 1  (1)

Để đường thẳng (d) đi qua M(\(\dfrac{8}{3};\dfrac{7}{3}\))

=> \(\dfrac{7}{3}=a\cdot\dfrac{8}{3}+b\)

=> \(\dfrac{8}{3}a+b=\dfrac{7}{3}\)  (2)

Từ (1) và (2) suy ra : a = 2; b = -3

Vậy (d) : y = 2x - 3

 

10 tháng 8 2020

Phương trình đường thẳng (d) luôn có dạng :

\(y=ax+b\left(d\right)\)

a/ Ta có : \(\left(d\right)\) đi qua hai điểm \(A\left(2,7\right);B\left(-1;-2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}7=2a+b\\-2=-a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\)

Vậy...

b/ Ta có : \(\left(d\right)\backslash\backslash\left(d_1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b\ne-6\end{matrix}\right.\)

\(\Leftrightarrow a=-2\)

Phương trình hoành độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là :

\(2x+1=-x+4\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\)

\(\Leftrightarrow y=3\)

Tọa độ giao điểm của \(\left(d_2\right);\left(d_3\right)\)\(H\left(1;3\right)\)

Lại có : \(\left(d\right)\) đi qua \(H\left(1;3\right)\)

\(\Leftrightarrow3=a+b\)

\(\Leftrightarrow b=5\)

Vậy....

c/ Ta có : \(\left(d\right)\) đi qua \(C\left(-2;1\right)\)

\(\Leftrightarrow-2=a+b\)

Lại có : \(\left(d\right)\perp\left(d_4\right)\)

\(\Leftrightarrow a.\frac{-1}{2}=1\)

\(\Leftrightarrow a=-2\)

\(\Leftrightarrow b=0\)

Vậy...

1 tháng 2 2022

a, Cho pt đt (d) có dạng y = ax + b 

(d) đi qua N(2;3) => 3 = 2a + b 

(d) // y = 2x - 5 <=> \(\left\{{}\begin{matrix}a=2\\b\ne-5\end{matrix}\right.\)

Thay a = 2 ta được : 3 = 4 + b => b = -1 (tmđk ) 

Vậy ptđt (d) có dạng y = 2x - 1 

b, Hoành độ giao điểm tm pt 

\(x^2-2x-3=0\)ta có : a - b + c = 0 

Vậy pt có 2 nghiệm \(x_1=-1;x_2=3\)

Với x = -1 => y = 1 

Với x = 3 => y = 9 

Vậy A(-1;1) ; B(3;9) 

c, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)

Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)

Thay vào ta được : 

\(A=4-3\left(-5\right)=19\)

1 tháng 2 2022

mình xin bạn làm đc tử tế thì  làm cứ làm v ai hiểu nổi

3 tháng 6 2021

c) 

(d) vuông góc với (d') : y = 2x 

=> (d) có dạng : y = -2x + b 

(d) đi qua M (3,5) : 

5 = (-2) . 3 + b 

=> b = 10

(d) : y = -2x + 10 

3 tháng 6 2021

d) 

Gọi : hàm số có dạng : y = ax + b 

Hàm số đi qua điểm A ( 1,2) , B(2,1) nên : 

\(\left\{{}\begin{matrix}2=a+b\\1=2a+b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)

a) Vì (d): y=ax+b//y=3x+1 nên \(\left\{{}\begin{matrix}a=3\\b\ne1\end{matrix}\right.\)

Suy ra: (d): y=3x+b

Thay x=2 và y=-2 vào (d), ta được:

\(3\cdot2+b=-2\)

\(\Leftrightarrow b=-8\)(thỏa ĐK)

Vậy: (d): y=3x-8

b) Để (d) vuông góc với y=2x+3 nên \(2a=-1\)

hay \(a=-\dfrac{1}{2}\)

Vậy: (d): \(y=\dfrac{-1}{2}x+b\)

Thay x=-3 và y=4 vào (d), ta được:

\(\dfrac{-1}{2}\cdot\left(-3\right)+b=4\)

\(\Leftrightarrow b+\dfrac{3}{2}=4\)

hay \(b=\dfrac{5}{2}\)

Vậy: (d): \(y=\dfrac{-1}{2}x+\dfrac{5}{2}\)