K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)

Do vecto pháp tuyến là \(\overrightarrow n  = (2; - \;3) \Rightarrow \overrightarrow u  = (3;2)\)

Từ đó ta có phương trình tham số của đường thẳng d là:

 \(\left\{ \begin{array}{l}x =  - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)

b) Phương trình tham số của  đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u  = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x =  - 2 - 7t\\y =  - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).

c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)

Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .

30 tháng 3 2017

a. phương trình tham số d có dạng : \(\left\{{}\begin{matrix}x=2+3t\\y=1+4t\end{matrix}\right.\)

b. phương trình tham số d có dạng: \(\left\{{}\begin{matrix}x=-2+5t\\y=3+t\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)

b) Do \(\Delta \) có vecto chỉ phương là \(\overrightarrow u  = \left( { - 2{\rm{ }};{\rm{ 3}}} \right).\)nên vecto pháp tuyến của \(\Delta \) là \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)

Phương trình tổng quát của đường thẳng\(\Delta \) đi qua điểm \(A\left( { - 1;{\rm{ }}2} \right)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3{\rm{ }};{\rm{ }}2} \right).\)là: \(3\left( {x + 1} \right) + 2\left( {y - 2} \right) = 0 \Leftrightarrow 3x + 2y - 1 = 0\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Đường thẳng \(\Delta \) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {5; - 3} \right)\), nên ta có phương trình tham số của \(\Delta \) là :

 \(\left\{ \begin{array}{l}x = 1 + 5t\\y = 1 - 3t\end{array} \right.\)

Đường thẳng \(\Delta \) đi qua điểm \(A(1;1)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3;5} \right)\)

Phương trình tổng quát của đường thẳng d là:

\(3(x - 1) + 5(y - 1) = 0 \Leftrightarrow 3x + 5y - 8 = 0\)

b) Đường thẳng \(\Delta \) đi qua gốc tọa độ \(O(0;0)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\), nên có phương trình tham số là:

\(\left\{ \begin{array}{l}x = 2t\\y =  - 7t\end{array} \right.\)

Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u  = \left( {2; - 7} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {7;2} \right)\) và đi qua \(O(0;0)\)

Ta có phương trình tổng quát là

\(7(x - 0) + 2(y - 0) = 0 \Leftrightarrow 7x + 2y = 0\)

c) Đường thẳng \(\Delta \) đi qua hai điểm \(M(4;0),N(0;3)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {MN}  = ( - 4;3)\) và có vectơ pháp tuyến \(\overrightarrow n  = (3;4)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 4 - 4t\\y = 3t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(3(x - 4) + 4(x - 0) = 0 \Leftrightarrow 3x + 4y - 12 = 0\)

22 tháng 7 2017

a) \(\left\{{}\begin{matrix}x=-5+4t\\y=-2-3t\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x=\sqrt{3}+2t\\y=1+3t\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Đường thẳng \(d\) đi qua điểm \(A( - 1;5)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\), nên có phương trình tham số là:

 \(\left\{ \begin{array}{l}x =  - 1 + 2t\\y = 5 + t\end{array} \right.\)

Đường thẳng \(d\) có vectơ chỉ phương \(\overrightarrow u  = \left( {2;1} \right)\),nên có vectơ pháp tuyền là \(\overrightarrow n  = \left( {1; - 2} \right)\) và đi qua \(A( - 1;5)\)

Ta có phương trình tổng quát là

 \((x + 1) - 2(y - 5) = 0 \Leftrightarrow x - 2y + 11 = 0\)

b) Đường thẳng \(d\) có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\) nên có vectơ chỉ phương \(\overrightarrow u  = \left( {2;3} \right)\), và đi qua điểm \(B(4; - 2)\) nên ta có phương trình tham số của \(d\) là :

\(\left\{ \begin{array}{l}x = 4 + 2t\\y =  - 2 + 3t\end{array} \right.\)

Đường thẳng \(d\) đi qua điểm \(B(4; - 2)\) và có vectơ pháp tuyến \(\overrightarrow n  = \left( {3; - 2} \right)\)

Phương trình tổng quát của đường thẳng d là:

\(3(x - 4) - 2(y + 2) = 0 \Leftrightarrow 3x - 2y - 16 = 0\)

c) Đường thẳng \(d\) có dạng \(y = ax + b\)

d đi qua \(P(1;1)\) và có hệ số góc \(k =  - 2\) nên ta có:

\(1 =  - 2.1 + b \Rightarrow b = 3\)

Suy ra đồ thị đường thẳng d có dạng \(y =  - 2x + 3\)

Vậy đường thẳng d có phương trình tổng quát là \(y + 2x - 3 = 0\)

Suy ra đường thẳng d  có vectơ pháp tuyến \(\overrightarrow n  = \left( {2;1} \right)\), nên có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 2} \right)\) và đi qua điểm \(P(1;1)\) nên ta có phương trình tham số của d là :

\(\left\{ \begin{array}{l}x = 1 + t\\y = 1 - 2t\end{array} \right.\)

 d) Đường thẳng \(d\) đi qua hai điểm \(Q(3;0)\)và \(R(0;2)\) nên có vectơ chỉ phương \(\overrightarrow u  = \overrightarrow {QR}  = ( - 3;2)\) và có vectơ pháp tuyến \(\overrightarrow n  = (2;3)\)

Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x = 3 - 3t\\y = 2t\end{array} \right.\)

Phương trình tổng quát của \(\Delta \) là: \(2(x - 3) + 3(x - 0) =  \Leftrightarrow 2x + 3y - 6 = 0\)

Vì (d) đi qua A(3;2) và có vecto pháp tuyến là vecto n(2;2) nên phương trình tham số là:

\(\left\{{}\begin{matrix}x=3+2t\\y=2+2t\end{matrix}\right.\)

3 tháng 2 2021

- Ta có phương trình tham số :

\(\left\{{}\begin{matrix}x=3-t\\y=-5+2t\end{matrix}\right.\) \(\left(t\in R\right)\)

8 tháng 4 2017

a,\(\Delta_a\) : 3 (x-1) - 2 (y-1) =3x-2y-1=0

b, \(\Delta_b\) : y=-\(\dfrac{1}{2}\)(x-2) =-\(\dfrac{1}{2}\)x =>\(\Delta_b\) : x+2y=0

c,\(\overrightarrow{AB}\)=(-2;-3) =>vtpt \(\overrightarrow{n}\)=(3;-2)

=>\(\Delta_c\): 3 (x-2) - 2(y-0) =0

=>\(\Delta_c\): 3x-2y-6=0

8 tháng 4 2017

Lời giải

a) \(\Delta_a=3\left(x-1\right)-2\left(y-1\right)=3x-2y+5=0\)

b)\(\Delta_b:y=-\dfrac{1}{2}\left(x-2\right)-1=-\dfrac{1}{2}x\Rightarrow\Delta_b:x+2y=0\)

c) \(\Delta_c:\left(3+0\right)\left(x-2\right)+\left(0-2\right)\left(y-0\right)=3x-2y-6\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Ta có \(\overrightarrow n .\overrightarrow u  = a.b + b.( - a) = 0\)

Tích vô hướng bằng 0 nên hai vectơ \(\overrightarrow n ,\overrightarrow u \)có phương vuông góc với nhau

b) Vectơ \(\overrightarrow {{M_0}M} \) có giá là đường thẳng \(\Delta\)

=> luôn cùng phương với vectơ \(\overrightarrow u \)

=> vectơ \(\overrightarrow {{M_0}M} \) có phương vuông góc với vectơ \(\overrightarrow n \)