Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16
=>y=2 hoặc y=-6
TH1: A(-2;2)
I(1;-2)
vecto IA=(-3;4)
Phương trình Δ là:
-3(x-1)+4(y+2)=0
=>-3x+3+4y+8=0
=>-3x+4y+11=0
TH2: A(-2;-6); I(1;-2)
vecto IA=(-3;-4)=(3;4)
Phương trình IA là:
3(x+2)+4(y+6)=0
=>3x+6+4y+24=0
=>3x+4y+30=0
b: Δ//12x+5y+6=0
=>Δ: 12x+5y+c=0
d(I;Δ)=5
=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)
=>|c+2|=5*13=65
=>c=63 hoặc c=-67
Do tâm (C) thuộc \(\Delta\) nên có dạng: \(I\left(-2a-3;a\right)\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2a-3-a+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Leftrightarrow\left|3a+2\right|=2\Rightarrow\left[{}\begin{matrix}a=0\\a=-\dfrac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(-3;0\right)\\I\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\end{matrix}\right.\)
Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x+3\right)^2+y^2=2\\\left(x+\dfrac{1}{3}\right)^2+\left(y+\dfrac{4}{3}\right)^2=2\end{matrix}\right.\)