K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2016

Đường tròn đi qua M,N có tâm nằm trên trung trực của MN.

Đường trung trực của MN qua trung điểm H(-3/2;5/2) và nhận \(\overrightarrow{MN}\)(1;-1) làm VTPT nên có phương trình (x+3/2)-(y-5/2)=0, tức là x-y+4=0

Vậy tâm I là nghiệm hệ \(\begin{cases}x-y+4=0\\3x-y+10=0\end{cases}\Leftrightarrow\begin{cases}x=-3\\y=1\end{cases}}\). Vậy I(-3;1), từ đó suy ra R=IM và phương trình của đường tròn

8 tháng 5 2016

khó vãi

Tâm I nằm trên Δ nên I(x;3x-4)

IA=IB

=>(x+1)^2+(3x-4-3)^2=(x-1)^2+(3x-9)^2

=>x^2+2x+1+9x^2-42x+49=x^2-2x+1+9x^2-54x+81

=>-40x+50=-56x+82

=>16x=32

=>x=2

=>I(2;2)

R=IA=căn (2+1)^2+(3-2)^2=căn 10

(C): (x-2)^2+(y-2)^2=10

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có phương trình đường tròn là \(({C_1}):{\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Ta có: \(\overrightarrow {IA}  = (3;3) \Rightarrow IA = 3\sqrt 2  = R\)

Suy ra phương trình đường tròn là; \({C_2}:{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 18\)

c) Vì tâm đường tròn nằm trên đường thẳng \(4x + y - 16 = 0\) nên có tọa độ \(I\left( {a;16 - 4a} \right)\)

Ta có: \(IA = \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}} ,IB = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)

A, B thuộc đường tròn nên \(IA = IB \Rightarrow \sqrt {{{\left( {a - 4} \right)}^2} + {{\left( {16 - 4a - 1} \right)}^2}}  = \sqrt {{{\left( {a - 6} \right)}^2} + {{\left( {16 - 4a - 5} \right)}^2}} \)

\(\begin{array}{l} \Rightarrow {\left( {a - 4} \right)^2} + {\left( {16 - 4a - 1} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {16 - 4a - 5} \right)^2}\\ \Rightarrow {\left( {a - 4} \right)^2} + {\left( {15 - 4a} \right)^2} = {\left( {a - 6} \right)^2} + {\left( {11 - 4a} \right)^2}\\ \Rightarrow  - 28a =  - 84 \Rightarrow a = 3\end{array}\)

Suy ra tâm đường tròn là \(I(3;4)\), bán kính \(R = IA = \sqrt {10} \)

Phương trình đường tròn trên là \(({C_3}):{\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} = 10\)

d) Giả sử phương trình đường tròn có dạng \({x^2} + {y^2} - 2mx - 2ny + p = 0\) (với tâm \(I(m;n),R = \sqrt {{m^2} + {n^2} - p} \))

Đường tròn đi qua gốc tọa độ và cắt 2 trục tọa độ tại các điểm có hoành độ a và tung độ là b nên ta có hệ phương trình:

Ta có điều kiện \(a,b \ne 0\), vì khi bằng 0 thì trùng với gốc tọa độ

\(\left\{ \begin{array}{l}{0^2} + {0^2} - 2m.0 - 2n.0 + p = 0\\{a^2} + {0^2} - 2ma - 2n.0 + p = 0\\{0^2} + {b^2} - 2m.0 - 2nb + p = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\{a^2} - 2ma = 0\\{b^2} - 2nb = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}p = 0\\m = \frac{a}{2}\\n = \frac{b}{2}\end{array} \right.\)

Vậy phương trình chính tắc của đường tròn trên là \({x^2} + {y^2} - ax - by = 0\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
29 tháng 4 2021

Gọi P là trung điểm MN \(\Rightarrow P\left(0;-1\right)\)

\(\overrightarrow{MN}=\left(2;-4\right)=2\left(1;-2\right)\Rightarrow\) trung trực của MN nhận (1;-2) là 1 vtpt

Phương trình trung trực MN:

\(1\left(x-0\right)-2\left(y+1\right)=0\Leftrightarrow x-2y-2=0\)

Gọi I là tâm đường tròn cần tìm \(\Rightarrow\) I là giao điểm của d và trung trực MN

Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x-2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{4}{3};-\dfrac{5}{3}\right)\)

\(\overrightarrow{IM}=\left(\dfrac{1}{3};\dfrac{8}{3}\right)\Rightarrow R^2=IM^2=\dfrac{65}{9}\)

Phương trình: \(\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)

19 tháng 10 2017

Đáp án B

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

Do $I\in (x-2y-1=0)$ nên gọi tọa độ của $I$ là $(2a+1,a)$

Đường tròn đi qua 2 điểm $A,B$ nên: $IA^2=IB^2=R^2$

$\Leftrightarrow (2a+1+2)^2+(a-1)^2=(2a+1-2)^2+(a-3)^2=R^2$

$\Rightarrow a=0$ và $R^2=10$

Vậy PTĐTr là: $(x-1)^2+y^2=10$

6 tháng 5 2021

Giả sử \(I=\left(2m+1;m\right)\)

Ta có: \(IA=IB\)

\(\Leftrightarrow\sqrt{\left(-2-2m-1\right)^2+\left(1-m\right)^2}=\sqrt{\left(2-2m-1\right)^2+\left(3-m\right)^2}\)

\(\Leftrightarrow4m^2+9+12m+m^2-2m+1=4m^2-4m+1+m^2-6m+9\)

\(\Leftrightarrow5m^2+10m+10=5m^2-10m+10\)

\(\Leftrightarrow m=0\)

\(\Rightarrow I=\left(1;0\right)\)

Bán kính \(R=\sqrt{\left(2-1\right)^2+3^2}=\sqrt{10}\)

Phương trình đường tròn: \(\left(x-1\right)^2+y^2=10\)

7 tháng 2 2019

Đáp án B

Gọi I (a; b) là tâm của đường tròn (C)  do đó:

AI2 = BI2

Nên ( a-1) 2+ (b-3) 2 = (a-3) 2+ (b-1) 2

=> a= b  (1)

  I( a; b) thuộc d: 2x- y + 7= 0 nên 2a – b+ 7= 0 (2)

Thay (1) vào (2) ta có: a= -7 => b= -7

Khi đó: R2= AI2= 164 .

Vậy  phương trình (C) : ( x+ 7)2+ (y+7)2= 164 .