K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a) Sử dụng phương trình đường tròn : x2 - y2 - ax – 2by +c = 0

Đường tròn đi qua điểm A(1; 2):

12 + 22 – 2a -4b + c = 0 <=> 2a + 4b – c = 5

Đường tròn đi qua điểm B(5; 2):

52 + 22 – 10a -4b + c = 0 <=> 10a + 4b – c = 29

Đường tròn đi qua điểm C(1; -3):

12 + (-3)2 – 2a + 6b + c = 0 <=> 2a - 6b – c = 10

Để tìm a, b, c ta giải hệ:

Lấy (2) trừ cho (1) ta được phương trình: 8a = 24 => a = 3

Lấy (3) trừ cho (1) ta được phương trình: -10b = 5 => b = - 0,5

Thế a = 3 ; b = -0.5 vào (1) ta tính được c = -1

Ta được phương trình đường tròn đi qua ba điểm A, B, C là :

x2 + y2 - 6x + y - 1 = 0.

b) Tương tự ta tính được I(2; 1), R= 5

Phương trình đường tròn đi qua ba điểm M(-2; 4); N(5; 5); P(6; -2) là:

(x - 2)2 + (y – 1)2 = 25 <=> x2 - y2 - 4x – 2y - 20 = 0

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi \(d,\Delta \) lần lượt là đường trung trực của hai đoạn thẳng MN, NP. Đường thẳng d đi qua trung điểm I của đoạn MN và vuông góc với MN.

Ta có: \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{4 + 2}}{2} = 3\\{y_I} = \frac{{{y_M} + {y_N}}}{2} = \frac{{ - 5 - 1}}{2} =  - 3\end{array} \right. \Rightarrow I\left( {3;3} \right);\overrightarrow {MN}  = \left( { - 2;4} \right) \Rightarrow \overrightarrow {{n_d}}  = \frac{{ - 1}}{2}\overrightarrow {MN}  = \left( {1; - 2} \right)\)

Phương trình tổng quát của \(d\) là: \(1\left( {x - 3} \right) - 2\left( {y + 3} \right) = 0 \Leftrightarrow x - 2y - 9 = 0\).

Tương tự, ta có phương trình đường thẳng \(\Delta \) là: \(x - 7y - 34 = 0\).

Gọi \(J\) là tâm đường tròn đi qua ba điểm M, N, P. Khi đó \(J = d \cap \Delta \), do đó tọa điểm \(J\) thỏa mãn hệ phương trình \(\left\{ \begin{array}{l}x - 7y - 34 = 0\\x - 2y - 9 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y =  - 5\end{array} \right. \Rightarrow J\left( { - 1; - 5} \right)\)

Từ đó ta tìm được \(R = JM = 5\)

Vậy phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).

Cách 2:

Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)

\(M\left( {4; - 5} \right),N\left( {2; - 1} \right),P\left( {3; - 8} \right)\) thuộc (C) nên ta có:

\(\left\{ \begin{array}{l}
16 + 25 + 8a - 10b + c = 0\\
4 + 1 + 4a - 2b + c = 0\\
9 + 64 + 6a - 16b + c = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
8a - 10b + c = - 41\\
4a - 2b + c = - 5\\
6a - 16b + c = - 73
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = 1\\
b = 5 \,\,\, \rm{(thỏa mãn)}\\
c = 1
\end{array} \right.\)

Vậy phương trình đường tròn đi qua 3 điểm M, N, P là: \({x^2} + {y^2} + 2x + 10y + 1 = 0\) hay \({\left( {x + 1} \right)^2} + {\left( {y + 5} \right)^2} = 25\).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình đường tròn (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\) là: \({\left( {x + 4} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

b) Bán kính đường tròn là: \(R = PE = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}}  = \sqrt {40} \)

Phương trình đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 40\).

c) Bán kính đường tròn là: \(R = \frac{{\left| {3.5 + 4.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 1} \right)^2} = 4\)

d) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = ID \Leftrightarrow I{A^2} = I{B^2} = I{D^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{D^2}\) nên: \(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\end{array} \right.\) 

=> \(I\left( {1; - 1} \right)\) và \(R = IA = \sqrt {{{\left( 4 \right)}^2} + {{\left( { - 3} \right)}^2}}  = 5\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, D là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\)

22 tháng 4 2017

Đường tròn tâm O(a,b)

\(\Delta_1\) đi qua \(AB..\Delta_1:\left(x-1\right)-\left(y-2\right)=x-y+1=0\)

\(\Delta_2\) trung trực AB: \(\Delta_2:\left(x-2\right)+\left(y-3\right)=x+y-5=0\)

Tâm (c) phải thuộc \(\Delta_2\) =>O(a,5-a)

Gọi I là điểm tiếp xúc \(\Delta\) và (C) ta có hệ pt

\(\Rightarrow\left\{{}\begin{matrix}OA=OB=\sqrt{\left(a-1\right)^2+\left(5-a-3\right)^2}=R\\OI=\left|3a+\left(5-a\right)-3\right|=\sqrt{10}R\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^2-2a+1+a^2-4a+4=R^2\\\left(2a+2\right)^2=10R^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2-6a+5=R^2\\4a^2+8a+4=10R^2\end{matrix}\right.\)

Lấy [(1) nhân 5] trừ [(2) chia 2]

\(\Leftrightarrow8a^2-32a+23=0\left\{\Delta=16^2-8.23=8.32-8.23=8\left(32-23\right)=2.4.9\right\}\) đề số lẻ thế nhỉ

\(\Rightarrow a=\left[{}\begin{matrix}\dfrac{16-6\sqrt{2}}{8}=2-\dfrac{3\sqrt{2}}{4}\\\dfrac{16+6\sqrt{2}}{8}=2+\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow b=\left[{}\begin{matrix}3+\dfrac{3\sqrt{2}}{4}\\3-\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\) \(\Rightarrow R^2=\left[{}\begin{matrix}\dfrac{\left(6-\dfrac{3\sqrt{2}}{2}\right)^2}{10}\\\dfrac{\left(6+\dfrac{3\sqrt{2}}{2}\right)^2}{10}\end{matrix}\right.\)

(C) =(x-2+3sqrt(2)/4)^2 +(y-3-3sqrt(2)/4)^2 =(6-3sqrt(2)/2)^2/10

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

17 tháng 5 2017

\(\overrightarrow{AB}\left(-3;2\right)\); \(\overrightarrow{AC}\left(1;m-2\right)\).
Ba điểm A, B, C thẳng hàng khi và chỉ khi:
\(\dfrac{1}{-3}=\dfrac{m-2}{2}\Leftrightarrow-3\left(m-2\right)=2\)\(\Leftrightarrow m=\dfrac{4}{3}\).

30 tháng 3 2017

a) Ta tìm bán kính R2 = IM2 => R2 = IM = (2 + 2)2 + (-3 -32) = 52

Phương trình đường tròn (C): (x +2)2 + (y – 3)2 =52

b) Đường tròn tiếp xúc với đường thẳng d nên khoảng cách từ tâm I tới đường thẳng d phải bằng bán kính đường tròn:

d(I; d) = R

Ta có : R = d(I; d) = \(=\)

Phương trình đường tròn cần tìm là:

(x +1)2 + (y – 2)2 = =>( x +1)2 + (y – 2)2 =

<=> 5x2 + 5y2 +10x – 20y +21 = 0

c) Tâm I là trung điểm của AB, có tọa độ :

x = \(\dfrac{1+7}{2}\) = 4; y = \(\dfrac{1+5}{2}\) = 3 => I(4; 3)

AB = \(2\sqrt{13}\) => R =\(\sqrt{13}\)

=> (x -4 )2 + (y – 3)2 =13

a: MN lớn nhất

=>MN là đường kính

=>Δ: y=ax+b đi qua A(3;0) và I(-1;2)

Ta có hệ pt:

3a+b=0 và -a+b=2

=>a=-1/2 và b=1/2

b: Kẻ IH vuông góc MN

MN nhỏ nhất khi H trùng với A

=>vecto IA=(4;-2)

Δ có phương trình là:

4(x-3)+(-2)(y-0)=0

=>4x-12-2y=0

24 tháng 5 2023

fdbxdg

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Phương trình tổng quát của đường thẳng d đi qua điểm \(A\left( { - 3;2} \right)\) và có một vectơ pháp tuyến là \(\overrightarrow n  = \left( {2; - 3} \right)\) là: \(2\left( {x + 3} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 2x - 3y+12 = 0\)

Do vecto pháp tuyến là \(\overrightarrow n  = (2; - \;3) \Rightarrow \overrightarrow u  = (3;2)\)

Từ đó ta có phương trình tham số của đường thẳng d là:

 \(\left\{ \begin{array}{l}x =  - \;3 + 3t\\y = 2 + 2t\end{array} \right.\)\((t \in \mathbb{R})\)

b) Phương trình tham số của  đường thẳng d đi qua điểm \(B\left( { - 2; - 5} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u  = \left( { - 7;6} \right)\) là: \(\left\{ \begin{array}{l}x =  - 2 - 7t\\y =  - 5 + 6t\end{array} \right.\left( {t \in \mathbb{R}} \right)\).

Từ đó ta có phương trình tổng quát của đường thẳng d là: \(\frac{{x + 2}}{{ - 7}} = \frac{{y + 5}}{6} \Leftrightarrow 6x + 7y + 47 = 0\).

c) Phương trình tổng quát của đường thẳng đi qua hai điểm \(C\left( {4;3} \right),D\left( {5;2} \right)\) là: \(\frac{{x - 4}}{{5 - 4}} = \frac{{y - 3}}{{2 - 3}} \Leftrightarrow x + y - 7 = 0\)

Từ đó ta có phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 7 - t\\y = t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) .