K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2021

Do d qua M nên pt có dạng: \(y=kx-2k+4\)

Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)

Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó:

\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)

Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)

Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)

9 tháng 3 2023

Help

 

2 tháng 3 2021

Đường thẳng đó có phương trình trên đoạn chắn là

\(\dfrac{x}{a}+\dfrac{y}{b}=1\) (d)

Do d đi qua A(1; 2) ⇒ \(\dfrac{1}{a}+\dfrac{2}{b}=1\) (1)

M,N lần lượt là giao điểm của d vs Ox, Oy

⇒ \(\left\{{}\begin{matrix}OM=\left|a\right|\\ON=\left|b\right|\end{matrix}\right.\); Kết hợp giả thiết 

⇒ |b| = 2|a|

⇒ \(\left[{}\begin{matrix}a=\dfrac{b}{2}\\a=\dfrac{-b}{2}\end{matrix}\right.\)

Nếu a = \(\dfrac{b}{2}\), kết hợp (1) ⇒ \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

Phương trình trên đoạn chắn là \(\dfrac{x}{2}+\dfrac{y}{4}=1\)

⇒ Phương trình tổng quát : 2x + y - 4 = 0

Nếu a = \(-\dfrac{b}{2}\) kết hợp (1) không có a,b

Vậy chỉ có 1 đường thẳng thỏa mãn đề bài

Đường thẳng đó có phương trình là

2x + y - 4 = 0

 

25 tháng 3 2022

<=>Để AB nhỏ nhất thì tam giác OAB phải vuông cân tại O, tức là OA=OB. Gọi tọa độ A(a;0) và B(0;b)

Khi đó ta có |a|=|b|

<=> với b=a hoặc b=-a

TH1: b=a=>:x/a+y/a=1

<=>: x+y=a

Mà N(9;1)€AB nên 9+1=a

=> a=10

Pt đường thẳng cần tìm là x+y-10=0

TH2: b=-a

=>: x/a-y/a=1 Tương đương: x-y=a

Mà N(9;1) €AB nên 9-1=a

=> a=8

Pt đường thẳng cần tìm là x-y-8=0

25 tháng 3 2022

thank kiu

AH
Akai Haruma
Giáo viên
3 tháng 2 2021

Lời giải:

Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:

$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$

$A\in Ox\Rightarrow y_A=0$

$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$

$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$

$B\in Oy\Rightarrow x_B=0$

$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$

$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$

Diện tích tam giác $ABC$:

$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$

Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$

Thay vào PTĐT $(d)$:

$4bx+by-(4b+4b)=0$

$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$

$\Rightarrow 4x+y-8=0$

Đây chính là PTĐT cần tìm.

19 tháng 2 2022

Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với

NV
21 tháng 7 2021

Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất