Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do d qua M nên pt có dạng: \(y=kx-2k+4\)
Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)
Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)
Khi đó:
\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)
Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)
Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)
Đường thẳng đó có phương trình trên đoạn chắn là
\(\dfrac{x}{a}+\dfrac{y}{b}=1\) (d)
Do d đi qua A(1; 2) ⇒ \(\dfrac{1}{a}+\dfrac{2}{b}=1\) (1)
M,N lần lượt là giao điểm của d vs Ox, Oy
⇒ \(\left\{{}\begin{matrix}OM=\left|a\right|\\ON=\left|b\right|\end{matrix}\right.\); Kết hợp giả thiết
⇒ |b| = 2|a|
⇒ \(\left[{}\begin{matrix}a=\dfrac{b}{2}\\a=\dfrac{-b}{2}\end{matrix}\right.\)
Nếu a = \(\dfrac{b}{2}\), kết hợp (1) ⇒ \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)
Phương trình trên đoạn chắn là \(\dfrac{x}{2}+\dfrac{y}{4}=1\)
⇒ Phương trình tổng quát : 2x + y - 4 = 0
Nếu a = \(-\dfrac{b}{2}\) kết hợp (1) không có a,b
Vậy chỉ có 1 đường thẳng thỏa mãn đề bài
Đường thẳng đó có phương trình là
2x + y - 4 = 0
<=>Để AB nhỏ nhất thì tam giác OAB phải vuông cân tại O, tức là OA=OB. Gọi tọa độ A(a;0) và B(0;b)
Khi đó ta có |a|=|b|
<=> với b=a hoặc b=-a
TH1: b=a=>:x/a+y/a=1
<=>: x+y=a
Mà N(9;1)€AB nên 9+1=a
=> a=10
Pt đường thẳng cần tìm là x+y-10=0
TH2: b=-a
=>: x/a-y/a=1 Tương đương: x-y=a
Mà N(9;1) €AB nên 9-1=a
=> a=8
Pt đường thẳng cần tìm là x-y-8=0
Lời giải:
Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:
$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$
$A\in Ox\Rightarrow y_A=0$
$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$
$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$
$B\in Oy\Rightarrow x_B=0$
$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$
$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$
Diện tích tam giác $ABC$:
$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$
Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$
Thay vào PTĐT $(d)$:
$4bx+by-(4b+4b)=0$
$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$
$\Rightarrow 4x+y-8=0$
Đây chính là PTĐT cần tìm.
Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với
Đề bài sai, tổng OA+OB chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất