Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số vận động viên được khảo sát là \(n = 3 + 8 + 12 + 12 + 4 = 39\).
Gọi \({x_1};{x_2};...;{x_{39}}\) là thời gian luyện tập của 39 vận động viên được xếp theo thứ tự không giảm. Ta phải chọn các vận động viên có thời gian luyện tập tương ứng là \({x_{30}};{x_{31}};...;{x_{39}}\)
Ta có:
\({x_1},{x_2},{x_3} \in \left[ {0;2} \right);{x_4},...,{x_{11}} \in \left[ {2;4} \right);{x_{12}},...,{x_{23}} \in \left[ {4;6} \right);{x_{24}},...,{x_{35}} \in \left[ {6;8} \right);{x_{36}},...,{x_{39}} \in \left[ {8;10} \right)\). Vậy \({x_{30}}\) thuộc nhóm \(\begin{array}{*{20}{l}}{\left[ {6;8} \right)}\end{array}\).
Ta có: \(n = 29;{n_j} = 12;C = 3 + 8 + 12 = 23;{u_j} = 6;{u_{j + 1}} = 8\)
\({x_{30}} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 6 + \frac{{\frac{{3.39}}{4} - 23}}{{12}}.\left( {8 - 6} \right) \approx 7,04\)
Vậy huấn luyện viên nên chọn các vận động viên có thời gian luyện tập từ 7,04 giờ trở lên.
xác xuất bắn trượt là 1-0.6=0.4
xác xuất Tm bài toán 0.4*0.6=0.24
a. Có \(C_2^1.C_3^1.C_4^1=24\) cách
b. Xếp 6 học sinh, có 6! cách
6 học sinh này tạo ra 5 khe trống sao cho các khe trống đều nằm giữa 2 học sinh. Xếp 3 thầy giáo vào 5 khe trống, có \(A_5^3\) cách
\(\Rightarrow6!.A_5^3\) cách
Xác suất để 1 viên bắn trúng mục tiêu là:
P=0,7*0,3+0,3*0,7=0,42
Xác suất để có đúng một viên bắn trúng mục tiêu là: \(0,7.0,3+0,3.0,7=0,42\).