Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt 1: 4(1/a + 1/b )= 1
Pt 2: 1/a + 3/b = 5/12
Từ 2 pt ta được hpt sau đó giải a,b với a là t/g người t1 làm cv đó, b là t/g người t2 làm cv đó
Gọi thời gian làm xong việc một mình của người thứ nhất và người thứ hai lần lượt là \(x,y\left(x,y>0\right)\)(đơn vị: h)
Trong 1 giờ, người thứ nhất làm xong \(\frac{1}{x}\)công việc còn người thứ hai làm xong \(\frac{1}{y}\)công việc.
2 người cùng làm trong 12 giờ thì xong công việc nên ta có phương trình \(\frac{12}{x}+\frac{12}{y}=1\)(1)
Trong 8 giờ, 2 người hoàn thành \(\frac{8}{x}+\frac{8}{y}\)công việc, sau đó người thứ 2 làm việc một mình trong 6h40p \(=\frac{20}{3}\)h, tức là hoàn thành thêm \(\frac{20}{3y}\) công việc thì xong công việc nên ta có pt \(\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{12}{x}+\frac{12}{y}=1\\\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x}=a\left(a>0\right)\\\frac{1}{y}=b\left(b>0\right)\end{cases}}\), hpt trên trở thành \(\hept{\begin{cases}12a+12b=1\\8a+8b+\frac{20}{3}b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}24a+24b=2\\24a+24b+20b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12a+12b=1\\20b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a+12.\frac{1}{20}=1\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{30}\\\frac{1}{y}=\frac{1}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=20\end{cases}}\)(nhận)
Vậy người thứ nhất làm một mình xong công việc mất 30h, người thứ hai làm xong công việc một mình mất 20h
Gọi x là số ngày của người 1 làm 1 mình xong việc
y là số ngày của người 2 làm 1 mình xong việc
ĐK: x;y > 0
Số việc người 1 làm trong 1h là \(\frac{1}{x}\)
Số việc người 2 làm trong 1h là \(\frac{1}{y}\)
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\10.\frac{1}{x}+\frac{1}{y}=1\end{cases}}\)
Từ đó bạn giải hệ và kết luận.
Làm lại qua đây vậy:
Gọi số ngày người thứ nhất làm một mình xong việc là x
số ngày người thứ hai làm một mình xong việc là y
ĐK: x;y > 0
Số việc người thứ nhất làm trong 1h là: \(\frac{1}{x}\)
Số việc người thứ hai làm trong 1h là: \(\frac{1}{y}\)
Theo đề bài ta có hệ phương trình:
\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\10.\frac{1}{x}+\frac{1}{y}=1\end{cases}}\)
Từ đây bạn giải tiếp & kết luận. Không hiểu hỏi nha hiccc
Gọi số ngày người thứ nhất làm một mình xong việc là x
số ngày người thứ nhất làm một mình xong việc là
Hai người cùng làm chung một công việc mất 12h mới xong nên ta có pt
1/x+1/y=1/12 (1)
nếu người thứ nhất làm một mình trong 4h, sau đó người thứ hai tiếp tục làm một mình trong 6h thì 2 người làm được 40%=2/5 công việc nên ta có pt
4/x+6/y=2/5 (2)
từ 1 và 2 ta có hệ
1/x+1/y=1/12
4/x+6/y=2/5
giải hệ ta được
x=20h
y=30h
Gọi a là thời gian làm xong công việc của người thứ nhất nếu làm một mình, b là thời gian làm xong công việc của người thứ 2 nếu làm một mình
=>1 ngày 2 người làm được lần lượt là 1/a và 1/b công việc
Mà 2 người cùng làm thì mất 6 ngày => 1 ngày 2 người cùng làm sẽ được 1/6 công việc
=> 1/a + 1/b = 1/6 (1)
Người thứ 1 làm việc trong 4 ngày thì được 1/a . 4 = 4/a công việc
Người thứ 2 làm việc trong 6 ngày thì được 1/b . 6 = 6/b công việc
Mà làm như thế mới được 4/5 công việc
=> 4/a + 6/b = 4/5 (2)
Từ (1) và (2) thì giải hệ phương trình, ta được:
a = 10
b = 15
Vậy : .......
Gọi a, b giờ là thời gian người 1, người 2 làm 1 mình xong việc (a, b dương)
=> Trong 1h, người 1 làm đc \(\frac{1}{a}\) việc, người 2 làm đc \(\frac{1}{b}\) việc
Nếu làm chung, sau 4h xong
=> \(\frac{4}{a}+\frac{4}{b}=1\) (1)
Nếu cùng làm trong 1h, người 1 nghỉ, người 2 làm tiếp trong 3h xong \(\frac{5}{12}\)công việc
=>\(\frac{1}{a}+\frac{1}{b}+\frac{3}{b}=\frac{5}{12}\) (2)
Từ (1)(2) Ta có hệ \(\hept{\begin{cases}\frac{4}{a}+\frac{4}{b}=1\\\frac{1}{a}+\frac{1}{b}+\frac{3}{b}=\frac{5}{12}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{4}\\\frac{3}{b}=\frac{1}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{36}{7}\\b=18\end{cases}}}\)
Vậy nếu làm riêng, người 1 mất \(\frac{36}{7}\left(h\right)\), người 2 mất 18h
Bn ơi đề là Người thứ nhất làm trong 1h rồi nghỉ sau đó người thứ hai làm trong 3h tiếp
Nếu giải như bn nó thành Hai người cùng làm trong 1h sau đó người thứ nhất nghỉ, người thứ hai tiếp tục lm trong 3h là thành 4h đúng không
Bn xem lại giúp mh nhe
Mơn!!