K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

Đáp án B

Phương pháp: Xét từng trường hợp a = 3; b = 3; c = 3 rồi cộng các kết quả ta được số các số cần tìm.

Cách giải: Gọi số có ba chữ số là a b c ¯ .

- TH1: a = 3.

Có 4 cách chọn b và 3 cách chọn c nên có 4.3 = 12 số.

- TH2: b = 3

Có 4 cách chọn a và 3 cách chọn c nên có 4.3 = 12 số.

- TH3: c = 3.

Có 4 cách chọn a và 3 cách chọn b nên có 4.3 = 12 số.

Vậy có tất cả 12 + 12 + 12 = 36 số.

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 là:

$5.A^4_6=1800$ (số)

b.

Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 mà không có 7 là:

$5.A^4_5=600$ (số)

Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 và 7 là:

$1800-600=1200$ (số)

22 tháng 10 2018

Chọn B

Số phần tử của tập hợp E là 

Vì 

 chia hết cho 3 nên khi lấy ra 6 chữ số thỏa điều kiện ta phải loại  ra một số chia hết cho 3. Ta có 3 trường hợp sau:

1) Trường hợp 1:

Loại bỏ số 0, khi đó a + b = c + d = e + f = 7

Bước 1: Chia ra làm 3 cặp số có tổng bằng 7 là : (1;6), (2;5), (3;4) có 1 cách chia.

Bước 2: Chọn a có 6 cách; chọn b có 1 cách; chọn c có 4 cách; chọn d có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 6.1.4.1.2.1 = 48 cách.

Trường hợp này có 48 số.

 

2) Trường hợp 2:

Loại bỏ số 3, khi đó a + b = c + d = e + f = 6

Bước 1: Chia ra làm 3 cặp số có tổng bằng 6 là : (0;6), (1;5), (2;4) có 1 cách chia.

Bước 2: Chọn a có 5 cách (vì có số 0); chọn b có 1 cách; chọn c có 4 cách; chọn d  có 1 cách; chọn e có 2 cách; chọn f có 1 cách: có 5.1.4.1.2.1 = 40 cách.

 

Trường hợp này có 40 số.

3) Trường hợp 3:

 

Loại bỏ số 6, khi đó a + b = c + d = e + f = 5. Tương tự như trường hợp 2, có 40 số.

Vậy trong tập hợp E có tất cả 48 +  40 + 40 = 128 số có dạng a b c d e f ¯  sao cho  a + b = c + d = e + f

Xác suất cần tìm là: 

17 tháng 4 2023

C?

NV
24 tháng 7 2021

a. Gọi số đó là \(\overline{ab}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a)

Theo quy tắc nhân ta có: \(5.5=25\) số

b. Gọi số đó là \(\overline{abc}\)

a có 5 cách chọn (khác 0), b có 5 cách chọn (khác a), c có 4 cách chọn (khác a và b)

Có: \(5.5.4=100\) số

c. Gọi số đó là \(\overline{abcd}\)

Do số chẵn nên d chẵn

- TH1: \(d=0\) (1 cách chọn d)

a có 5 cách chọn (khác d), b có 4 cách chọn (khác a và d), c có 3 cách chọn 

\(\Rightarrow1.5.4.3=60\) số

- TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (2 và 4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn (khác a và d), c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Theo quy tắc cộng, có: \(60+96=156\) số thỏa mãn

d.

Gọi số đó là \(\overline{abcde}\)

Số lẻ nên e lẻ \(\Rightarrow\) e có 3 cách chọn (1;3;5)

a có 4 cách chọn (khác 0 và e), b có 4 cách chọn (khác a và e), c có 3 cách, d có 2 cách

\(\Rightarrow3.4.4.3.2=288\) số

24 tháng 7 2021

Thanks ạ

30 tháng 11 2017

Đáp án D

Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.

Cách giải: Gọi số đó là  a b c d e

- TH1: a = 1

+ b có 7 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 7.6.5.4 = 840 số

- TH2: b = 1

+ a ≠ b ,   a   ≠ 0 , nên có 6 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 6.6.5.4 = 720 số.

- TH3: c = 1.

+ a ≠ c ,   a ≠ 0 , nên có 6 cách chọn.

+ b có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có 6.6.5.4 = 720 số.

Vậy có tất cả 840 + 720 + 720 = 2280 số.