Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn ấy.
Học tốt !!!
a/vì AB//DC(gt) suy ra AB//DE
và AC//BE(gt)
do hai đoạn thẳng song song(AB//DE) chắn bởi 2 đường thẳng song song (AC//BE) suy ra AC=BE
Mà AC=BD(gt)
suy ra BD=BE
Trong tam giác BDE có BD=BE suy ra tam giác BDE cân tại B (dpcm)
b/Chứng minh:tg ACD=tg BDC
VÌ tg BDE cân tại B nên ta có :GÓc B1 = GÓc E1(*)
Vì AC//BE(gt)
E=C1 là 2 góc đồng vị
suy ra góc C1 =góc E(**)
từ (*);(**) suy ra B1=C1
bạn tự xét tg nha
suy ra tg ACD=tg BDC
c/bạn tự cm lun nha
a) Hình thang ABEC ( AB // CE ) có hai cạnh bên AC, BE song song nên chúng bằng nhau: AC = BE (1)
Theo giả thiết AC = BD (2)
Từ (1) và (2) suy ra BE = BD do đó \(\Delta BDE\)cân
b) Do AC // BE nên \(\widehat{E}=\widehat{C_1}\left(3\right)\)
Mà tam giác BDE cân tại B ( câu a ) nên \(\widehat{E}=\widehat{D_1}\left(4\right)\)
Từ (3)(4) => \(\widehat{D_1}=\widehat{C_1}\)
* Xét 2 tam giác : ACD và BDC có :
DC chung
AC = BD ( gt )
\(\widehat{C_1}=\widehat{D_1}\left(cmt\right)\)
\(\Rightarrow\Delta ACD=\Delta BDC\left(c-g-c\right)\)
c) Theo ( c/m câu b ) ta có :
\(\Delta ACD=\Delta BDC\)
nên \(\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )
Vậy hình thang ABCD có hai góc kề một đáy bằng nhau nên là hình thang cân.
a) Chứng minh được MN//PQ (cùng vuông góc với AC). Chứng minh được MP = QN. Þ ĐPCM.
b) Ta có:
S M N E = 1 2 S M E N C , S N P E = 1 2 S P B N E , S P Q E = 1 2 S , A P E Q S M Q E = 1 2 S Q E M D ⇒ S M N P Q = 1 2 S A B C S .
c) Chu vi MNPQ = MN + PQ + NP + QM
= EC + AE + BE + ED = AC + BE + ED.
Trong tam giác BED, BE + ED ³ BD
Þ Chu vi MNPQ ≥ AC + BD
Þ E là tâm của hình vuông ABCD
Giả sử tam giác vuông ABC có cạnh huyền là a và hai cạnh góc vuông là b, c (hình a).
Diện tích hình vuông dựng trên cạnh huyền a là a2
Diện tích các hình vuông dựng trên hai cạnh góc vuông b, c lần lượt là b2 + c2
Theo định lí Pitago, tam giác vuông ABC có: a2 = b2 + c2
Vậy: Trong một tam giác vuông, tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích hình vuông dựng trên cạnh huyền.
Chú ý: Ta có một cách chứng minh khác đinh lyd Pitago bằng diện tích. Trên hình b, hai hình vuông ABDE và GHIK cùng có cạnh bằng b + c.
Do đó
SABDE = (b+c)2= Sb+ Sc+ 4. (1)
SGHIK= (b+c)2 = Sa + 4. (2)
Từ (1) và (2) suy ra
Sb+ Sc = Sa
bạn tự vẽ hình nhé :)
a) ABCE là hình thang có 2 cạnh bên song song => AC=BE mà AC=BD => BE=BD => tam giác BDE cân tại B
b) tam giác BDE cân tại B => góc BDC=góc E mà góc ACD=góc E (2 góc đồng vị, AC//BE) => góc BDC= góc ACD
từ đó, chứng minh đc tg ACD=BDC (c-g-c)
c) tg ACD=BDC => góc ADC=góc BCD (2 góc tương ứng) => đpcm
tg BDE cân tại B:
ta có:ACD=BAC(AB//CD)
mà ACD =BEC =>BEC=BAC
xét tg ABC va tg ECB
+BC chung
+ACB=EBC(so le trong)
+BEC=BAC(cm trên )
=>tam giac ABC =tam giac ECB
=>BDC=BEC
ma `BEC=ACD(đồng vị)
=>ACD=BDC
xét tg ACD va tg BDC,ta có :
+DC chung
+ACD=BDC
+AC=BD(gt)
=>tg ACD = tg BDC
=>ADC=BCD
=>ABCD la hình thang cân (đpcm)
a) Vì \(ABCD\) là hình thang cân (gt)
\( \Rightarrow AC = BD\) và \(AB\;{\rm{//}}\;CD\)
Xét \(\Delta BCD\) và \(\Delta CBE\) ta có:
\(\widehat {DCB} = \widehat {CBE}\) (do \(AB\) // \(CD\))
\(BC\) chung
\(\widehat {CBD} = \widehat {BCE}\) (do \(CE\) // \(BD\))
Suy ra \(\Delta BCD = \Delta CBE\) (g-c-g)
Suy ra \(BD = CE\) (hai cạnh tương ứng)
Mà \(AC = BD\) (cmt)
Suy ra \(AC = EC\)
Suy ra \(\Delta CAE\) cân tại \(C\)
b) Xét \(\Delta ABD\) và \(\Delta BAC\) ta có:
\(DA = BC\) (do \(ABCD\) là hình thang cân)
\(\widehat {DAB} = \widehat {CBA}\) (Do \(ABCD\) là hình thang cân)
\(AB\) chung
Suy ra \(\Delta ABD = \Delta BAC\) (c-g-c)
Định lý:
Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề của hai đoạn ấy.