\(y=x^3-2\left|x\right|+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Tập xác định của hàm số \(D=\mathbb{R}\).

Ngoài ra \(f\left(-x\right)=\left(-x\right)^2-2\left|-x\right|+1=x^2-2\left|x\right|+1=f\left(x\right)\) Hàm số là hàm số chẵn. Đồ thị của nó nhận trục tung làm trục đối xứng. Để xét chiều biến thiên và vẽ đồ thị của nó chỉ cần xét chiều biến thiên và vẽ đồ thị của nó trên nửa khoảng [0; \(+\infty\)), rồi lấy đối xứng qua Oy. Với \(x\ge0\), có \(f\left(x\right)=x^2-2x+1\)

Ôn tập chương II

17 tháng 5 2017

a) Ta có thể viết

\(y=\left\{{}\begin{matrix}2x-3;\left(x\ge\dfrac{3}{2}\right)\\-2x+3;\left(x< \dfrac{3}{2}\right)\end{matrix}\right.\)

Hàm số bậc nhất y=ax+b

17 tháng 5 2017

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

13 tháng 4 2017

a) Tập xác định D = R

Bảng biến thiên

Đồ thị hàm số

Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1

Giao điểm với trục tung là P(0,-1)

Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)

b)

Tập xác định D = R

Đồ thị hàm số

Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)

Giao điểm với trục tung là P(0,2)

Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)



30 tháng 3 2017

a) f(x) = (x+2)(x-1)

f(x) > 0 với x < -2 hoặc x > 1

f(x) ≤ 0 với -2 ≤ x ≤ 1

b) y = 2x (x + 2) = 2(x+1)2 – 2

Bảng biến thiên:

Hàm số : y = \(\left(x+2\right)\left(x+1\right)=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)

Bảng biến thiên :

Đồ thị (C1) và (C2)

Hoành độ các giao điểm A và B của (C1) và (C2) là nghiệm của phương trình f(x) = 0 ⇔ x1 = -2, x2 = 1

⇔ A(-2, 0) , B(1, 6)

c) Giải hệ phương trình

\(\left\{{}\begin{matrix}\dfrac{ac-b^2}{4a}\\a\left(-2\right)^2+b\left(-2\right)+c=0\\a\left(1\right)^2+b\left(1\right)+c=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2,b=0,c=8\\a=-\dfrac{2}{9},b=\dfrac{16}{9},c=\dfrac{40}{9}\end{matrix}\right.\)

30 tháng 3 2017

a) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,-1)

+ Giao với trục hoành Q(2, 0)

b) Bảng biến thiên

Đồ thị hàm số

Đồ thị là đường thẳng đi qua 2 điểm:

+ Giao với trục tung P(0,4)

+ Giao với trục hoành Q(2, 0)

c) y=√x2y=x2 = |x| ={−x,x≤0x,x>0{−x,x≤0x,x>0

Bảng biến thiên

Đồ thị hàm số

d) y = |x+1| = {−x−1,x≤−1x+1,x>−1{−x−1,x≤−1x+1,x>−1

Bảng biến thiên

Đồ thị hàm số