K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Hệ số \(a = 1 > 0,b =  - 3 \Rightarrow \frac{{ - b}}{{2a}} = \frac{3}{2}\)

Vậy hàm số nghịch biến trên khoảng \(\left( { - \infty ;\frac{3}{2}} \right)\) và đồng biến trên \(\left( {\frac{3}{2}; + \infty } \right)\)

b) Ta có \(a =  - 2 < 0,b = 0\)

\( \Rightarrow  - \frac{b}{{2a}} = 0\)

Vậy hàm số đã cho đồng biến trên khoảng \(\left( { - \infty ;0} \right)\) và nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-10}{2\cdot\left(-3\right)}=\dfrac{10}{6}=\dfrac{5}{3}\\y=-\dfrac{10^2-4\cdot\left(-3\right)\cdot\left(-4\right)}{4\cdot\left(-3\right)}=\dfrac{13}{3}\end{matrix}\right.\)

Bảng biến thiên:

x-\(\infty\)                    5/3                          +\(\infty\)
y+\(\infty\)                    13/3                       -\(\infty\)

loading...

b: Hàm số đồng biến khi x<5/3; nghịch biến khi x>5/3

Giá trị nhỏ nhất là y=13/3 khi x=5/3

a: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-6}{2\cdot4}=\dfrac{-6}{8}=\dfrac{-3}{4}\\y=-\dfrac{6^2-4\cdot4\cdot\left(-5\right)}{4\cdot4}=-\dfrac{29}{4}\end{matrix}\right.\)

Bảng biến thiên là:

x-\(\infty\)                 -3/4                             +\(\infty\)
y-\(\infty\)                 -29/4                           +\(\infty\)

 loading...

b: Hàm số đồng biến khi x>-3/4; nghịch biến khi x<-3/4

GTNN của hàm số là y=-29/4 khi x=-3/4

18 tháng 5 2017

Bảng biến thiên và đồ thị của hàm số y = |-3x / 4 + 1| (h.33)

Giải sách bài tập Toán 10 | Giải sbt Toán 10

14 tháng 10 2021

a: TXĐ: D=R

Khi \(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=-\left(-x\right)^2-2\cdot\left(-x\right)+3\)

\(=-x^2+2x+3\)

\(\Leftrightarrow f\left(-x\right)\ne f\left(x\right)\ne-f\left(x\right)\)

Vậy: Hàm số không chẵn không lẻ

 

14 tháng 10 2021

Cái này là xét sự biến thiên: nghịch biến hay đồng biến chứ ạ???

13 tháng 4 2017

a) Tập xác định D = R

Bảng biến thiên

Đồ thị hàm số

Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1

Giao điểm với trục tung là P(0,-1)

Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)

b)

Tập xác định D = R

Đồ thị hàm số

Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)

Giao điểm với trục tung là P(0,2)

Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)



31 tháng 10 2021
x-∞-1+∞
y+∞-4+∞

 

26 tháng 9 2019

Ta có thể viết

Giải sách bài tập Toán 10 | Giải sbt Toán 10

và đồ thị của hàm số y = x + |x| được vẽ trên hình 34.

Giải sách bài tập Toán 10 | Giải sbt Toán 10

11 tháng 9 2019

y = –x2 + 3x + 2 có a = –1 < 0, b = 3, c = 2:

+ Tập xác định D = R

+ Đồng biến trên Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10 , nghịch biến trên Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10

Bảng biến thiên:

Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10

+ Đồ thị là parabol có:

Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10

Trục đối xứng là đường thẳng x = 3/2

Giao điểm với trục tung là B(0 ; 2). Điểm đối xứng với B qua đường thẳng x = 3/2 là C(3 ; 2).

Đi qua các điểm (–1 ; –2) và (4 ; –2)

Giải bài 10 trang 51 sgk Đại số 10 | Để học tốt Toán 10