Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Gọi M là trung điểm của BC, AM= a 3 2 , BC ⊥ (A'AM)
Kẻ AH ⊥ A'M, suy ra AH ⊥ (A'BC) và AH=d(A,(A'BC))
Xét tam giác A'AM vuông tại A, ta có:
1 A H 2 = 1 A A ' 2 + 1 A M 2 ⇒ A H = a 21 7
Vậy d(A,(A'BC))= a 21 7
Ta có :
Do H là trung điểm của A'B' nên :
BE // (A'B'C') nên
Trong tam giác vuông BB'H có :
Do đó :
+ Tính khoảng cách từ B đến mặt phẳng (AA'C'C).
Gọi M là điểm đối xứng của H qua A'. Khi đó
Ta có
Trong dựng (Định lý 3 đường vuông góc)
Trong dựng
Xét tam giác vuông có :
Xét tam giác có
Chọn C.
Để ý rằng diện tích tam giác đều cạnh a bằng a 3 3 4
Chọn C.
Gọi (H) là lăng trụ đứng tam giác đều ABC.A'B'C'
Ta có thể tích khối lăng trụ ABC.A'B'C' là:
V = A A ' . S A B C = a . a 2 3 4 = a 3 3 4
Đáp án C