Cho phương trình x2 + x + m - 2 = 0 (1)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021

\(x^2+x+m-2=0\)

\(a,m=0\)

\(\Rightarrow x^2+x-2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2

21 tháng 3 2021

a, Thay m = 0 vào phương trình trên ta được : 

\(x^2+x-2=0\)

Ta có : \(\Delta=1+8=9\)

\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)

Vậy m = 0 thì x = -2 ; x = 1 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)

hay bất phương trình trên tương đương : 

\(2m-3-3\left(m-2\right)< 1\)

\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)

\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)

20 tháng 3 2021

a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)

Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)

\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)

b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)

\(x_1^2+x_2^2=3x_1x_2-1\)

mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)

\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)

hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)

\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)

19 tháng 5 2023

m=1.

21 tháng 3 2021

1,với m=4=>phương trình(1) <=>\(x^2+x+4-5=0\Leftrightarrow x^2+x-1=0\)

\(\Delta=1^2-4.1.\left(-1\right)=5\Rightarrow\hept{\begin{cases}x1=\frac{-1+\sqrt{5}}{2}\\x2=\frac{-1-\sqrt{5}}{2}\end{cases}}\)

2 để phương trình có 2 nghiệm phân biệt =>\(\Delta>0\Leftrightarrow1^2-4.1.\left(m-5\right)>0\)

\(\Leftrightarrow1-4m+20>0\Leftrightarrow m< \frac{21}{4}\)áp dụng hệ thức vi-ét ta có

\(\hept{\begin{cases}x1+x2=\frac{-b}{a}=-1\hept{\begin{cases}-x1=x2+1\\-x2=x1=1\end{cases}}\\x1.x2=\frac{c}{a}=m-5\end{cases}}\)

để \(\frac{6-m-x1}{x2}+\frac{6-m-x2}{x1}=\frac{10}{3}\)

\(\Leftrightarrow\frac{m-6+x1}{-x2}+\frac{m-6+x2}{-x1}=\frac{10}{3}\)

\(\Leftrightarrow\frac{\left(m-5\right)+\left(x1+1\right)-2}{x1+1}+\frac{\left(m-5\right)+\left(x2+1\right)-2}{x2+1}=\frac{10}{3}\)

\(\Leftrightarrow\frac{x1.x2}{x1+1}+1-\frac{2}{x1+1}+\frac{x1.x2}{x2+1}+1-\frac{2}{x2+1}=\frac{10}{3}\)

\(\Leftrightarrow\frac{x1.x2}{-x2}+1-\frac{2}{-x2}+\frac{x1.x2}{-x1}+1-\frac{2}{-x1}=\frac{10}{3}\)

\(\Leftrightarrow-x1+1+\frac{2}{x2}-x2+1+\frac{2}{x1}=\frac{10}{3}\)

\(\Leftrightarrow-\left(x1+x2\right)+1+1+\frac{2x_2+2x_1}{x2.x2}=\frac{10}{3}\)

\(\Leftrightarrow3+\frac{2\left(x1+x2\right)}{x2.x1}=\frac{10}{3}\)

\(\Leftrightarrow\frac{2.\left(-1\right)}{m-5}=\frac{1}{3}\)

\(\Leftrightarrow\frac{-2}{m-5}=\frac{1}{3}\)

\(\Rightarrow m-5=-2.3\)

\(\Leftrightarrow m-5=-6\Leftrightarrow m=-1\)(t/m)

vậy m=1

21 tháng 3 2021

Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.

Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=2m2{x1+x2=3x1x2=−2m2

Điều kiện x12=4x22(x12x2)(x1+2x2)=0[x1=2x2x1=2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2

Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2{x1=2x2=12=2m2m{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.

Với x1=2x2,x1=−2x2, giải hệ {x1+x2=3x1=2x2{x1=6x2=318=2m2m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3

Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.

Phương trình (1) có Δ=9+8m2>0Δ=9+8m2>0 với mọi m nên (1) luôn có 2 nghiệm phân biệt.

Gọi hai nghiệm đó là x1,x2,x1,x2, theo định lý Viet ta có: {x1+x2=3x1x2=2m2{x1+x2=3x1x2=−2m2

Điều kiện x12=4x22(x12x2)(x1+2x2)=0[x1=2x2x1=2x2x12=4x22⇔(x1−2x2)(x1+2x2)=0⇔[x1=2x2x1=−2x2

Với x1=2x2,x1=2x2, giải hệ {x1+x2=3x1=2x2{x1=2x2=12=2m2m{x1+x2=3x1=2x2⇔{x1=2x2=1⇒2=−2m2⇔m∈∅⇒ không tồn tại m.

Với x1=2x2,x1=−2x2, giải hệ {x1+x2=3x1=2x2{x1=6x2=318=2m2m=±3{x1+x2=3x1=−2x2⇔{x1=6x2=−3⇒−18=−2m2⇔m=±3

Vậy m=±3m=±3 thỏa mãn yêu cầu bài toán.

7 tháng 3 2022

a, \(\Delta\)' =(m+3)\(^2\)-(m\(^2\)+6m)=m\(^2\)+6m+9-m\(^2\)-6m=9>0 với mọi m .Pt luôn có 2 no pb

b, Áp dụng hệ thức vi-ét có: x\(_1\)+x\(_2\)=-2(m+3)    ;   x\(_1\)x\(_2\)=m\(^2\)+6m     (I)

Để (2x\(_1\)+1)(2x\(_2\)+1)=13\(\Leftrightarrow\) 4x\(_1\)x\(_2\)+2(x\(_1\)+x\(_2\))+1=13       (*)

Thay (I) vào (*) có : 4(m\(^2\)+6m)-4(m+3)+1=13\(\Leftrightarrow\)4m\(^2\)+20m-24=0\(\Leftrightarrow\)m=1; m=-6

19 tháng 5 2023

Đáp số:  �=1;�=−6m=1;m=6

a, \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)

\(\Delta=\left(3m+1\right)^2-4\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-8m^2-4m+4\)

\(=m^2+2m+1+4\)

\(=\left(m+1\right)^2+4\) \(\ge4\)với \(\forall m\)

\(\Rightarrow\)Phương trình luôn có \(2n_0\)phân biệt với mọi m

b,

Theo vi-ét :

\(\hept{\begin{cases}x_1+x_2=3m+1\\x_1x_2=2m^2+m-1\end{cases}}\)

\(B=x_1^2+x_2^2-3x_1x_2\)

\(=\left(x_1+x_2\right)^2-5x_1x_2\)

\(=\left(3m+1\right)^2-5\left(2m^2+m-1\right)\)

\(=9m^2+6m+1-10m^2-5m+5\)

\(=-m^2+m+6\)

\(=-\left(m^2-m-6\right)\)

\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{1}{4}-6\right]\)

\(=-\left[\left(m-\frac{1}{2}\right)^2-\frac{25}{4}\right]\)

\(=-\left(m-\frac{1}{2}\right)^2+\frac{25}{4}\)

Vậy GTLN  \(B=\frac{25}{4}\)khi \(-\left(m-\frac{1}{2}\right)^2=0\) \(\Leftrightarrow m=\frac{1}{2}\)

30 tháng 4 2019

bạn tìm đenta 

sau đó cho đenta >0 

theo hệ thức viets tính đc x1+x2, x1*x2

bình phương 2 vế của pt thỏa mãn thế x1, x2 tương ứng là tìm dc m

mik chỉ nêu ý chình thôi nha mik hơi bận

1 tháng 5 2019

mình cũng làm như vậy lúc biến đổi ra căn nhưng dưới căn không quy về hằng đẳng thức được 

bạn có nick face không ib gửi mình xem thử lời giải với ??