K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

a: Các đơn thức đồng dạng là \(2.5xy^3;-2xy^3\)

b: Các đơn thức đồng dạng là \(2013;3,6\)

\(-0.7x^3y^2;y^2\cdot x^3\)

c: Các đơn thức đồng dạng là \(10x^2yz;25yx^2z\)

\(-8xy^2z^2;z^2xy^2\)

26 tháng 8 2023

a) Các đơn thức đồng dạng là:

\(2,5xy^3\) và \(-2xy^3\)

b) Các đơn thức của đồng dạng:

\(-0,7x^3y^2\) và \(y^2\cdot x^3\)

\(3,6\) và \(2013\)

c) Các đơn thứ đồng dạng là:

\(-8xy^2z^2\) và \(z^2xy^2\)

\(10x^2yz\) và \(25yx^2z\)

3 tháng 12 2023

a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt: \(x^2+x+1=y\), khi đó biểu thức trở thành:

\(y\left(y+1\right)-12\)

\(=y^2+y-12\)

\(=y^2-3y+4y-12\)

\(=y\left(y-3\right)+4\left(y-3\right)\)

\(=\left(y-3\right)\left(y+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

\(=\left(x^2-x+2x-2\right)\left(x^2+x+5\right)\)

\(=\left[x\left(x-1\right)+2\left(x-1\right)\right]\left(x^2+x+5\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)

b) \(\left(x^2+2x\right)^2+9x^2+18x+20\)

\(=\left(x^2+2x\right)^2+9\left(x^2+2x\right)+20\)

Đặt: \(x^2+2x=a\), khi đó biểu thức trở thành:

\(a^2+9a+20\)

\(=a^2+4a+5a+20\)

\(=a\left(a+4\right)+5\left(a+4\right)\)

\(=\left(a+4\right)\left(a+5\right)\)

\(=\left(x^2+2x+4\right)\left(x^2+2x+5\right)\)

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

Đặt: \(x^2+10x+20=y\), khi đó biểu thức trở thành:

\(\left(y-4\right)\left(y+4\right)+16\)

\(=y^2-16+16\)

\(=y^2\)

\(=\left(x^2+10x+20\right)^2\)

$\text{#}Toru$

Gọi chiều rộng là x

Chiều dài là x+15

Theo đề, ta có phương trình:

\(\left(x+5\right)\left(x+12\right)=x\left(x+15\right)+80\)

\(\Leftrightarrow x^2+17x+60-x^2-15x=80\)

=>2x+60=80

=>x=10

Vậy: Chiều rộng là 10m

Chiều dài là 25m

Gọi độ dài quãng đường là x

Theo đề, ta có: 

\(\dfrac{x}{42}-\dfrac{x}{46}=\dfrac{3}{4}\)

hay x=362,25(km)

19 tháng 2 2022

\(3x-15=2x^2-10x=>3x-15-2x^2+10x=0=>13x-2x^2-15=0=>...\)

19 tháng 2 2022

\(3x-15=2x\left(x-5\right)\\ \Leftrightarrow3x-15=2x^2-10x\\ \Leftrightarrow3x+2x^2+10x=15\\ \Leftrightarrow13x+2x^2=15\\ \Leftrightarrow x\left(13+2x\right)=15\\ \Leftrightarrow\left[{}\begin{matrix}x=15\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=1\end{matrix}\right.\)

b: ĐKXĐ: x>=2/3

PT=>(x-1)(x-2)+(x-1)*căn 3x-2=0

=>căn 3x-2+x-2=0

=>căn 3x-2=-x+2

=>x<=2 và 3x-2=x^2-4x+4

=>x^2-4x+4-3x+2=0 và x<=2

=>x=1

c: =>x+3+x-4-2căn (x^2-x-12)=1

=>2*căn x^2-x-12=2x-1-1=2x-2

=>căn x^2-x-12=x-1

=>x>=1 và x^2-x-12=x^2-2x+1

=>x=13

40: Ta có: \(A=27x^3+8y^3-3x-2y\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2-1\right)\)

15 tháng 7 2016

\(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

=>Pmin=(x-1)2+4=4

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy Pmin=4 khi x=1

----------------------------------------------------------

\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

=>Qmin=\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}=-\frac{9}{2}\)

<=>\(2\left(x-\frac{3}{2}\right)^2=0\)

<=>\(\left(x-\frac{3}{2}\right)^2=0\)

<=>\(x-\frac{3}{2}=0\)

<=>\(x=\frac{3}{2}\)

Vậy Qmin=\(-\frac{9}{2}\) khi \(x=\frac{3}{2}\)

15 tháng 7 2016

Cảm ơn bạn nha

a: Xét ΔMQP có

H,I lần lượt là trung điểm của MQ,MP

=>HI là đường trung bình của ΔMQP

=>HI//QP và HI=QP/2

Xét ΔPMN có

I,K lần lượt là trung điểm của PM,PN

=>IK là đường trung bình của ΔPMN

=>IK//MN và \(IK=\dfrac{MN}{2}\)

b: H,I,K thẳng hàng 

mà HI//PQ và IK//MN

nên HI//MN

Ta có: HI//MN

HI//PQ

Do đó: MN//PQ