Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba anh ấy đẹp trai quá!!!!!!!! Love love <3!!!!!!!!
\(\int_2^5\dfrac{x}{(x-1)(x+2)}dx=\dfrac{1}{3}\int_2^5\dfrac{3x}{(x-1)(x+2)}dx\)
\(=\dfrac{1}{3}\int_2^5[\dfrac{1}{(x-1)}+\dfrac{2}{(x+2)}]dx\)
\(=\dfrac{1}{3}\int_2^5\dfrac{1}{(x-1)}dx+\dfrac{2}{3}\int_2^5\dfrac{1}{(x+2)}dx\)
\(=\dfrac{1}{3}.\ln(x-1)|_2^5+\dfrac{2}{3}.\ln(x+2)|_2^5\)
\(=...\)
\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{99.100}+\frac{1}{50}=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}=1\)
Ta có:
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...\frac{1}{50.51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...-\frac{1}{50}+\frac{1}{50}-\frac{1}{51}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{2}-\frac{1}{51}\)
Vì \(\frac{1}{2}-\frac{1}{51}<1\)
nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
\(y<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(y<1-\frac{49}{50}<1\)
=> y < 1
/hoi-dap/question/38716.html