Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình 1 : AB//CD, CD//MN, AB// MN
Hình 2 : AN//DH, DH//MK , AN // MK
Cm
Vì góc BAC = góc MCD (=120°)
Mà 2 góc này ở vị trí slt
=> AB//CD
Vì góc MCD + góc CMN = 180° ( do 60°+120°=180°)
Mà hai góc này ở vị trí slt
=> CD // MN
Mà AB // CD ( cmt)
=> CD//AB//MN
Hình 2 : cm
Vì góc IAN = góc AID ( gt)
Mà 2 góc này ở vị trí slt
=> AN // DH
Vì góc AID = góc IKM ( gt)
Mà hai góc này ở vị trí đồng vị
=> DH // MK
Mà AN // DH ( cmt)
=> AN// DH // MK
\(\dfrac{2}{5}-\left|\dfrac{1}{2}-x\right|=6\)
\(\Leftrightarrow\left|\dfrac{1}{2}-x\right|=\dfrac{2}{5}-6\)
\(\Leftrightarrow\left|\dfrac{1}{2}-x\right|=-\dfrac{28}{5}\)( vô lý do \(\left|\dfrac{1}{2}-x\right|\ge0\forall x\))
Vậy \(x\in\left\{\varnothing\right\}\)
\(\Rightarrow\left|\dfrac{1}{2}-x\right|=\dfrac{2}{5}-6=-\dfrac{28}{5}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=-\dfrac{28}{5},\forall\dfrac{1}{2}-x\ge0\\\dfrac{1}{2}-x=\dfrac{28}{5},\forall\dfrac{1}{2}-x< 0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{61}{10},\forall x\le\dfrac{1}{2}\left(loại\right)\\x=-\dfrac{51}{10},\forall x>\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\Rightarrow x\in\varnothing\)
Bài 5:
a: Xét ΔAEB và ΔAED có
AE chung
AB=AD
EB=ED
Do đó: ΔAEB=ΔAED
\(\frac{5x+7}{4}+\frac{3x+5}{8}>\frac{9x+4}{5}\)
\(\frac{10\cdot\left(5x+7\right)}{40}+\frac{5\cdot\left(3x+5\right)}{40}>\frac{8\cdot\left(9x+4\right)}{40}\)
10.(5x + 7) + 5.(3x + 5) > 8.(9x + 4)
10.(5x + 7) + 5.(3x + 5) - 8.(9x + 4) > 0
50x + 70 + 15x + 25 - 72x - 32 > 0
- 7x + 63 > 0
- 7.(x - 9) > 0
\(\Rightarrow x-9
Bài 1:
1) Kẻ tia Cx//AB//DE
Ta có: Cx//AB
\(\Rightarrow\widehat{BAC}+\widehat{ACx}=180^0\)(2 góc trong cùng phía)
\(\Rightarrow\widehat{ACx}=180^0-\widehat{BAC}=180^0-140^0=40^0\)
Ta có: Cx//DE
\(\Rightarrow\widehat{xCD}+\widehat{CDE}=180^0\)( 2 góc trong cùng phía)
\(\Rightarrow\widehat{xCD}=180^0-\widehat{CDE}=180^0-150^0=30^0\)
\(\Rightarrow\widehat{ACD}=\widehat{ACx}+\widehat{xCD}=40^0+30^0=70^0\)
2) Ta có AB//DE(gt)
Mà DE⊥MN
=> AB⊥MN =>\(\widehat{AMN}=90^0\Rightarrow\dfrac{1}{2}\widehat{AMN}=45^0\Rightarrow\widehat{AMP}=45^0\) (do MP là tia phân giác \(\widehat{AMN}\))
Ta có AB//DE
=> \(\widehat{AMP}+\widehat{DPM}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{DPM}=180^0-\widehat{AMP}=180^0-45^0=135^0\)
Nối A vs C, Bvs C
Xét \(\Delta OBC\) và \(\Delta OAC\)có:
OA=OB(cùng là bán kính của cung tròn O)
BC=AC(là bán kính của cung tròn tâm B và A)
OC là cạnh chung
=> \(\Delta OBC=\Delta OAC\)(c.c.c)
=> góc O1=O2(2 góc tương ứng)
Mà OC nằm giữa 2 tia Ox và Oy
=> OC là phân giác của góc xOy
Bài 1:
a) Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}\)=\(\dfrac{x+y}{2+3}\)=\(\dfrac{-15}{5}\)= -3
=> x= -3.2= -6; y= -3.3= -9.
b) Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}\)=\(\dfrac{x-y}{3-4}\)=\(\dfrac{12}{-1}\)= -12
=> x= -12.3= -36; y= -12.4= -48
c) 3x=7y=\(\dfrac{x}{7}=\dfrac{y}{3}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{y}=\dfrac{y}{3}=\dfrac{x-y}{7-3}=\dfrac{-16}{4}=-4\)
=> x= -4.7= -28; y= -4.3= -12
d) \(\dfrac{x}{y}=\dfrac{17}{13}=\dfrac{x}{17}=\dfrac{y}{13}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{13}=\dfrac{x+y}{17+13}=\dfrac{-60}{30}=-2\)
=> x= -2.17= -34; y= -2.13= -26
e) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
=>x= 9= \(3^2\)= 3.4= 12; y= 16= \(4^2\)= 4.4= 16
Bài 2:
2x=3y=\(\dfrac{x}{3}=\dfrac{y}{2}\); 5y=7z=\(\dfrac{y}{7}=\dfrac{z}{5}\)
-> \(\dfrac{x}{3}=\dfrac{y}{2};\dfrac{y}{7}=\dfrac{z}{5}\) = \(\dfrac{x}{21}=\dfrac{y}{14};\dfrac{y}{14}=\dfrac{z}{10}\)=> \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\) = \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)=\(\dfrac{3x-7y+5z}{63-98+50}\)=\(\dfrac{30}{15}=2\)
=> x= 2.21= 42
=> y= 2.14= 28
=> z= 2.10= 20