Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.x\left(-2x+4\right)-2x\left(-x+4\right)+x\)
\(-2x^2+4x+2x^2-8x+x\)
\(x-4x\)
\(-3x\)
cách 2 :
\(x\left(-2x+4\right)-2x\left(-x+4\right)+x\)
\(2x\left(-x+2\right)-2x\left(-x+4\right)+x\)
\(2x\left(-x+2+x-4\right)+x\)
\(-4x+x\)
\(-3x\)
\(2.x\left(-2x+4\right)-2x\left(-x+3\right)+x\)
\(2x\left(-x+2+x-3\right)+x\)
\(-2x+x\)
\(-x\)
a, \(x\left(-2x+4\right)-2x\left(-x+4\right)+x\)
\(=-2x^2+4x+2x^2-8x+x=-3x\)
b, \(x\left(-2x+4\right)-2x\left(-x+3\right)+x\)
\(=-2x^2+4x+2x^2-6x+x=-x\)
Ta có : \(x^2-6=x\)
\(\Leftrightarrow x^2-6-x=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;3\right\}\)
\(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;4\right\}\)
Vậy nghiệm chung của 2 phương trình là x = 3
\(\frac{x^3+3x^2-4x-12}{x^2+x-6}=\frac{x\left(x^2+x-6\right)+2x^2+2x-12}{x^2+x-6}=\frac{\left(x+2\right)\left(x^2+x-6\right)}{x^2+x-6}\)
\(=x+2\)
Ta có:\(A\div B=\frac{x^3+3x^2-4x-12}{x^2+x-6}\)
\(=\frac{x^3+x^2-6x-2x^2-2x+12}{x^2-2x+3x-6}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)}{x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x-6\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-2\right)\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=x-2\)
\(=\left(x^4+y^2\right)\left(xy^5+6\right)=x^5y^5+6x^4+xy^7+6y^2\)
a) (x2y2 –
xy + 2y)(x – 2y)
= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)
= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2
b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y
= x3 + x2. y - x2. y - xy2 + xy2 + y3
= x3 - y3