K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2022

\(\left(\dfrac{2}{3}xy^2\right)\left(x^2y-xy+\dfrac{x}{2}+\dfrac{1}{4}\right)\)

\(=\dfrac{2}{3}x^3y^3-\dfrac{2}{3}x^2y^3+\dfrac{1}{3}x^2y^2+\dfrac{1}{6}xy^2\)

29 tháng 5 2022

`(2/3xy^2)(x^2y-xy+x/2+1/4)`

`=2/3x^3y^3-2/3x^2y^3+1/3x^2y^2+1/6`

19 tháng 4 2017

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3



19 tháng 4 2017

a) (x2y2xy + 2y)(x – 2y)

= x2y2. X + x2y2(-2y) + (xy) . x + (-xy)(-2y) + 2y . x + 2y(-2y)

= x3y2 – 2x2y3- x2y + xy2 + 2xy – 4y2

b) (x2 – xy + y2)(x + y) = x2 . x + x2. y + (-xy) . x + (-xy) . y + y2 . x + y2. y

= x3 + x2. y - x2. y - xy2 + xy2 + y3

= x3 - y3


12 tháng 11 2016

b) (ko chép lại đề nhé)  \(=\frac{x^2\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\cdot\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{xy\left(x^2-xy+y^2\right)}=\frac{x\left(x-y\right)}{y}\)

Đơn thức đầu tiên trong mẫu của phân thức thứ 2 có lẽ là \(x^3y\) 

12 tháng 11 2016

xin loi em khong biet!

27 tháng 4 2017

a,3x(5x^2-2x-1)

=15x^3-6x^2-3x

27 tháng 4 2017

a) \(3x\left(5x^2-2x-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2+2xy-3\right)\left(-xy\right)\)

\(=-x^3y-2x^2y^2+3xy\)

c) \(\dfrac{1}{2}x^2y\left(2x^3-\dfrac{2}{5}xy^2-1\right)\)

\(=x^5y-\dfrac{1}{5}x^3y^3-\dfrac{1}{2}x^2y\)

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

27 tháng 7 2016

a) x2(5x3 – x - \(\frac{1}{2}\)) = x2. 5x3 + x2 . (-x) + x2 . ( \(-\frac{1}{2}\) )

= 5x5 – x3\(\frac{1}{2}\)x2

b) (3xy – x2 + y) \(\frac{2}{3}\)x2y = \(\frac{2}{3}\)x2y . 3xy + \(\frac{2}{3}\)x2y . (- x2) + \(\frac{2}{3}\)x2y .

y                                    = 2x3y2\(\frac{2}{3}\)x4y + \(\frac{2}{3}\)x2y2

c) (4x3– 5xy + 2x)( \(-\frac{1}{2}\)xy) = \(-\frac{1}{2}\)xy . 4x3 + ( \(-\frac{1}{2}\)xy) . (-5xy) + ( \(-\frac{1}{2}\)xy) . 2x

= -2x4y + \(\frac{5}{2}\)x2y2 – x2y.

17 tháng 10 2019

\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)

\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)

\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)

\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)

Giờ chỉ cần thế x, y vô nữa là xong nhé.

17 tháng 10 2019

\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)

\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)

\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)

\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)

\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)

\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)

\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)

\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)

\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)

\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)

Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :

\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)