K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

3 tháng 7 2019

1.a (3x-2y)2= (3x)2 - 2. 3x . 2y - (2y)= 9x2  - 12xy - 4y2

2.b (2x - 1/2)= (2x)2 - 2.2x.1/2 - (1/2)2= 4x2 - 2 - 1/4

3.c (x/2 - y) (x/2+y)= (x/2)2 - (y)2 = x/4 - y

3 tháng 8 2020

Bài 1 :

 \(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)

\(\left(2x-\frac{1}{2}\right)^2=4x^2-4x+\frac{1}{4}\)

\(\left(\frac{x}{2}-y\right)\left(\frac{x}{2}+y\right)=\frac{x^2}{4}-y^2\)

\(\left(x+\frac{1}{3}\right)^3=x^3+x^2+\frac{1}{3}x+\frac{1}{27}\)

\(\left(x-2\right)\left(x^2+2x+2^2\right)=x^3-8\)

9 giờ trước (16:03)

Giúp vs


7 giờ trước (18:19)

a) \(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)

Giải:

Bắt đầu với vế trái của phương trình:

\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)

Bước 1: Mở rộng \(\left(\right. x + y \left.\right)^{3}\):

\(\left(\right. x + y \left.\right)^{3} = x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}\)

Bước 2: Mở rộng \(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\):

\(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = x \left(\right. x^{2} - x y + y^{2} \left.\right) + y \left(\right. x^{2} - x y + y^{2} \left.\right)\)\(= x^{3} - x^{2} y + x y^{2} + y x^{2} - x y^{2} + y^{3}\)\(= x^{3} + y^{3} + \left(\right. y x^{2} - x^{2} y \left.\right) = x^{3} + y^{3}\)

Bước 3: Trừ các biểu thức:

\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = \left(\right. x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3} \left.\right) - \left(\right. x^{3} + y^{3} \left.\right)\)\(= 3 x^{2} y + 3 x y^{2}\)\(= 3 x y \left(\right. x + y \left.\right)\)

Vậy, phương trình đã đúng:

\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)


b) \(B = \left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) - 3 \left(\right. 9 x^{3} - 2 \left.\right)\)

Giải:

Bước 1: Mở rộng \(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\):

\(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) = 3 x \left(\right. 9 x^{2} - 6 x + 4 \left.\right) + 2 \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\)\(= 27 x^{3} - 18 x^{2} + 12 x + 18 x^{2} - 12 x + 8\)\(= 27 x^{3} + 8\)

Bước 2: Mở rộng \(3 \left(\right. 9 x^{3} - 2 \left.\right)\):

\(3 \left(\right. 9 x^{3} - 2 \left.\right) = 27 x^{3} - 6\)

Bước 3: Trừ hai biểu thức:

\(B = \left(\right. 27 x^{3} + 8 \left.\right) - \left(\right. 27 x^{3} - 6 \left.\right) = 8 + 6 = 14\)

Vậy, \(B = 14\).


c) \(C = \left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)

Giải:

Bước 1: Mở rộng \(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right)\):

\(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) = x \left(\right. x^{2} - 2 x + 4 \left.\right) - 2 \left(\right. x^{2} - 2 x + 4 \left.\right)\)\(= x^{3} - 2 x^{2} + 4 x - 2 x^{2} + 4 x - 8\)\(= x^{3} - 4 x^{2} + 8 x - 8\)

Bước 2: Trừ biểu thức \(x^{3} - 7\):

\(C = \left(\right. x^{3} - 4 x^{2} + 8 x - 8 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)\(C = x^{3} - 4 x^{2} + 8 x - 8 - x^{3} + 7\)\(C = - 4 x^{2} + 8 x - 1\)

Vậy, \(C = - 4 x^{2} + 8 x - 1\).


d) \(D = \left(\right. x + 1 \left.\right)^{3} - \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) - 3 x \left(\right. x + 1 \left.\right)\)

Giải:

Bước 1: Mở rộng \(\left(\right. x + 1 \left.\right)^{3}\):

\(\left(\right. x + 1 \left.\right)^{3} = x^{3} + 3 x^{2} + 3 x + 1\)

Bước 2: Mở rộng \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):

\(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = x \left(\right. x^{2} + x + 1 \left.\right) - 1 \left(\right. x^{2} + x + 1 \left.\right)\)\(= x^{3} + x^{2} + x - x^{2} - x - 1\)\(= x^{3} - 1\)

Bước 3: Mở rộng \(3 x \left(\right. x + 1 \left.\right)\):

\(3 x \left(\right. x + 1 \left.\right) = 3 x^{2} + 3 x\)

Bước 4: Trừ các biểu thức:

\(D = \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) - \left(\right. x^{3} - 1 \left.\right) - \left(\right. 3 x^{2} + 3 x \left.\right)\)\(D = x^{3} + 3 x^{2} + 3 x + 1 - x^{3} + 1 - 3 x^{2} - 3 x\)\(D = 2\)

Vậy, \(D = 2\).


e) \(E = 3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) + x \left(\right. x + 1 \left.\right) - x \left(\right. x^{2} + x + 1 \left.\right)\)

Giải:

Bước 1: Mở rộng \(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):

\(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = 3 \left(\right. x \left(\right. x^{2} + x + 1 \left.\right) - \left(\right. x^{2} + x + 1 \left.\right) \left.\right)\)\(= 3 \left(\right. x^{3} + x^{2} + x - x^{2} - x - 1 \left.\right) = 3 \left(\right. x^{3} - 1 \left.\right)\)\(= 3 x^{3} - 3\)

Bước 2: Mở rộng \(x \left(\right. x + 1 \left.\right)\):

\(x \left(\right. x + 1 \left.\right) = x^{2} + x\)

Bước 3: Mở rộng \(x \left(\right. x^{2} + x + 1 \left.\right)\):

\(x \left(\right. x^{2} + x + 1 \left.\right) = x^{3} + x^{2} + x\)

Bước 4: Trừ các biểu thức:

\(E = \left(\right. 3 x^{3} - 3 \left.\right) + \left(\right. x^{2} + x \left.\right) - \left(\right. x^{3} + x^{2} + x \left.\right)\)\(E = 3 x^{3} - 3 + x^{2} + x - x^{3} - x^{2} - x\)\(E = 2 x^{3} - 3\)

Vậy, \(E = 2 x^{3} - 3\).


g) \(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 2 x^{3}\)

Giải:

Mở rộng biểu thức và kiểm tra tính đúng đắn:

\(9 x \left(\right. x + 1 \left.\right)^{3} = 9 x \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x\)\(\left(\right. x - 1 \left.\right)^{3} = x^{3} - 3 x^{2} + 3 x - 1\)

Cộng cả hai biểu thức:

\(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x + x^{3} - 3 x^{2} + 3 x - 1\)\(= 9 x^{4} + 28 x^{3} + 24 x^{2} + 12 x - 1\)

So với \(2 x^{3}\), ta thấy biểu thức không đúng. Có thể bài toán có lỗi. Nếu có sự nhầm lẫn, bạn có thể điều chỉnh lại nhé!


h) \(\left(\right. x + 3 \left.\right) \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} - 3 x + 9 \left.\right) = x \left(\right. x^{2} + 4 \left.\right) - 1\)

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

3 tháng 8 2016

Đề phần a sai

3 tháng 8 2016

bạn sử hộ mình

 

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

15 tháng 7 2019

bài 2: a bạn có thể thêm bớt y^2 vào vế bên phải

bài 2 c thì bạn có thể mở ngoặc ở vế phải rồi tính sau đó áp dụng hđt