\(1.\left(6x^3-7x^2-x+2\right):\left(2x+2\right)\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(\dfrac{6x^3-7x^2-x+2}{2x+2}\)

\(=\dfrac{6x^3+6x^2-13x^2-13x+12x+12-10}{2x+2}\)

\(=\dfrac{3x^2\left(2x+2\right)-\dfrac{13}{2}x\left(2x+2\right)+6\left(2x+2\right)-10}{2x+2}\)

\(=3x^2-\dfrac{13}{2}x+6-\dfrac{5}{x+1}\)

2: \(\dfrac{x^2-y^2+6x-9}{x+y+3}\)

\(=\dfrac{x^2-\left(y-3\right)^2}{x+y+3}\)

\(=\dfrac{\left(x-y+3\right)\left(x+y-3\right)}{x+y+3}\)

 

17 tháng 10 2017

a) \(\left( {6{x^3} - 7{x^2} - x + 2} \right):\left( {2x + 1} \right)\)

Giải bài Ôn tập chương 1 - Đại số - Toán 8 tập 1

b) $(x^4-x^3+x^2+3x):(x^2-2x+3)$

Giải bài Ôn tập chương 1 - Đại số - Toán 8 tập 1

c) \(\left( {{x^2} + {y^2} + 6x + 9} \right):\left( {x + y + 3} \right)\)

\(=\left( {{x^2} + 6x + 9 - {y^2}} \right)\left( {x + y + 3} \right)\)

\(=\left[ {\left( {{x^2} + 2x.3 + {3^2}} \right) - {y^2}} \right]:\left( {x + y + 3} \right)\)

\(=\left[ {{{\left( {x + 3} \right)}^2} - {y^2}} \right]:\left( {x + y + 3} \right)\)

\(=\left( {x + 3 - y} \right)\left( {x + 3 + y} \right):\left( {x + y + 3} \right)\)

$= x + 3 - y$

$= x - y + 3$

26 tháng 10 2017

(6x3 - 7x2 - x + 2) : (2x + 1)

= (6x3 + 3x2 - 10x2 - 5x + 4x + 2) : (2x + 1)

= [(6x3 + 3x2) - (10x2 + 5x) + (4x + 2)] : (2x + 1)

= [3x2(2x + 1) - 5x(2x + 1) + 2(2x + 1)] : (2x + 1)

= (3x2 - 5x + 2)(2x + 1) : (2x + 1)

= 3x2 - 5x + 2

(x4 - x3 + x2 + 3x) : (x2 - 2x + 3)

= (x4 + x3 - 2x3 - 2x2 + 3x2 + 3x) : (x2 - 2x + 3)

= [(x4 + x3) - (2x3 + 2x2) + (3x2 + 3x)] : (x2 - 2x + 3)

= [x3(x + 1) - 2x2(x + 1) + 3x(x + 1)] : (x2 - 2x + 3)

= (x3 - 2x2 + 3x)(x + 1) : (x2 - 2x + 3)

= x(x2 - 2x + 3)(x + 1): (x2 - 2x + 3)

= x(x + 1)

= x2 + x

(x2 - y2 + 6x + 9) : (x + y + 3)

= [(x2 + 6x + 9) - y2] : (x + y + 3)

= [(x + 3)2 - y2] : (x + y + 3)

= (x + 3 + y)(x + 3 - y) : (x + y + 3)

= (x + y + 3)(x - y + 3) : (x + y + 3)

= x - y + 3

CHÚC BN HOK TỐT okokok

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0
29 tháng 11 2018

x4 - x3 + x2 + 3x  x^4 - x^3 + x^2 + 3x x^2-2x +3 x^2+x - x^4-2x^3-3x^2 x^3-2x^2+3x - x^3-2x^2+3x 0

13 tháng 8 2019

\(\left(a-b\right)^2-\left(b-a\right)\)

\(=\left(a-b\right)^2+\left(a-b\right)\)

\(=\left(a-b\right)\left(a-b+1\right)\)

13 tháng 8 2019

\(5\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)\)

\(=\left(a+b\right)\left[5\left(a+b\right)-\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[5a+5b-a+b\right]\)

\(=\left(a+b\right)\left[4a+6b\right]\)

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

11 tháng 7 2017

1 , \(x^5+x^4+1=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

= \(x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)=\(\left(x^2+x+1\right)\left(x^3-x+1\right)\)

2 , \(x\left(x+4\right)\left(x+6\right)\left(x+10\right)+128=\left(x^2+10x\right)\left(x^2+10x+24\right)+128\)(*)

Đặt x2 + 10 = a , a>0 (1)

=> (*) <=> a(a+24)+128=a2 + 24a+128=(a+8)(a+16) (**)

Thay (1) vào (**) ta được :

(*) <=> \(\left(x^2+10+8\right)\left(x^2+10+16\right)\)

11 tháng 7 2017

mấy câu còn lại tương tự

29 tháng 9 2019

a) =(x-y)5+(x-y)3=(x-y)3[(x-y)2+1]

b) =33(y-2x)3:-9(y-2x)=-3(y-2x)2

c) =(x-y)2 [3(x-y)3-2(x-y)2+3]:5(x-y)2=[3(x-y)3-2(x-y)2+3]/5