Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)
b)(x-y+z)4:(x-y+z)3=x-y+z
\(x+y+z=0\Leftrightarrow x^2+y^2+z^2+2xy+2x+2yz=0\)
\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)
Có:
\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)
\(\Leftrightarrow x^2+y^2+z^2=-2xy-2yz-2xz\)
\(P=\frac{18\left(x^2+y^2+z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)-2xy-2xz-2yz}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}\)
\(=\frac{18\left(x^2+y^2+z^2\right)}{3\left(x^2+y^2+z^2\right)}=6\)
\(x+y+z=6\Rightarrow\left(x+y+z\right)^2=36\Rightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=36\)
\(\Rightarrow xy+yz+zx=\frac{36-\left(x^2+y^2+z^2\right)}{2}=\frac{36-12}{2}=12=x^2+y^2+z^2\)(1)
Mặt khác ta luôn có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
hay: \(2x^2+2y^2+2z^2-2\left(xy+yz+zx\right)\ge0\)
hay: \(x^2+y^2+z^2\ge xy+yz+zx\)
Vậy để đẳng thức (1) xảy ra thì x = y = z = 2.
18 x 2 y 2 z : 6 x y z = 18 : 6 x 2 : x y 2 : y z : z = 3 x y