Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Kẻ AH⊥BC
Vì ΔABC vuông cân tại A
⇒ AH cũng là đường trung tuyến
⇒ AH=BH=CH
Ta có:MB2 + MC2 = (BH-HM)2 + (CH+HM)2 = (AH-HM)2+(AH+HM)2
= AH2-2.AH.HM+HM2+AH2+2.AH.HM+HM2=2(AH2+HM2)
Áp dụng định lý Py-ta-go vào ΔAHM vuông tại A ta có:
MA2 = AH2+HM2
⇒ MB2+MC2=2MA2
b) Ta có: MA≥AH (đường xiên và đường vuông góc)
⇒ MA2 ≥ AH2
⇒ 2MA2 ≥ 2AH2
⇒ MB2+MC2 ≥ 2AH2
Dấu "=" xảy ra ⇔ MA=AH ⇔ M là trung điểm của BC
Vậy Min K = 2AH2 ⇔ M là trung điểm của BC
1: Khi x=3-2 căn 2 thì \(A=\dfrac{\sqrt{2}-1+2}{\sqrt{2}-1}=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
2: \(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
3: \(P=A:B=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{x-4}{x}\)
\(x\cdot P< =10\sqrt{x}-29-\sqrt{x-25}\)
=>\(x-4< =10\sqrt{x}-29-\sqrt{x-25}\)
\(\Leftrightarrow x-4-10\sqrt{x}+29< =-\sqrt{x-25}\)
=>\(x-10\sqrt{x}+25< =-\sqrt{x-25}\)
=>(căn x-5)^2<=-căn x-25
=>x-25=0
=>x=25
3: \(=\dfrac{\left(3-\sqrt{5}\right)^2}{\sqrt{5}-3}=\sqrt{5}-3\)
4: \(=\dfrac{\left(\sqrt{5}-2\right)^2}{\sqrt{5}-2}=\sqrt{5}-2\)
5: \(=\dfrac{8-2\sqrt{15}+4\sqrt{15}}{\sqrt{5}+\sqrt{3}}\)
\(=\dfrac{8+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\sqrt{5}+\sqrt{3}}=\sqrt{5}+\sqrt{3}\)
6:
\(=\dfrac{8\sqrt{6}-11-4\sqrt{6}}{4\sqrt{2}-2\sqrt{3}}\)
\(=\dfrac{4\sqrt{6}-11}{4\sqrt{2}-2\sqrt{3}}=\dfrac{\sqrt{3}-2\sqrt{2}}{2}\)
1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{3-\sqrt{15}}=\dfrac{\sqrt{15}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)}=\sqrt{15}\)
2) \(\dfrac{5\sqrt{6}-6\sqrt{5}}{2\sqrt{15}-5\sqrt{2}}=\dfrac{\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)}{\sqrt{10}\left(\sqrt{6}-\sqrt{5}\right)}=-\sqrt{3}\)
3) \(\dfrac{14-6\sqrt{5}}{\sqrt{5}-3}=\dfrac{\left(3-\sqrt{5}\right)^2}{\sqrt{5}-3}=\sqrt{5}-3\)
4) \(\dfrac{9-4\sqrt{5}}{\sqrt{5}-2}=\dfrac{\left(2-\sqrt{5}\right)^2}{\sqrt{5}-2}=\sqrt{5}-2\)
5) \(\dfrac{\left(\sqrt{3}-\sqrt{5}\right)^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=1\)
6) \(\dfrac{8\sqrt{6}-\left(\sqrt{3}+2\sqrt{2}\right)^2}{4\sqrt{2}-2\sqrt{3}}=\dfrac{8\sqrt{6}-11-4\sqrt{6}}{4\sqrt{2}-2\sqrt{3}}\)
\(=\dfrac{4\sqrt{6}-11}{2\left(2\sqrt{2}-\sqrt{3}\right)}=\dfrac{(\sqrt{3}-2\sqrt{2})^2}{2\left(\sqrt{3}-2\sqrt{2}\right)}=\dfrac{\sqrt{3}-2\sqrt{2}}{2}\)
Xét (O) có
ΔMEN nội tiếp
MN là đường kính
Do đó: ΔMEN vuông tại E
=>\(\widehat{MEN}=90^0\)
=>\(\widehat{FEN}=90^0\)
Xét tứ giác HFEN có
\(\widehat{FHN}+\widehat{FEN}=90^0+90^0=180^0\)
=>HFEN là tứ giác nội tiếp
=>H,F,E,N cùng thuộc một đường tròn
Câu 2:
Ta có: \(\sqrt{x^2-4x+4}=x-1\)
\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)
\(\Leftrightarrow-2x=-3\)
hay \(x=\dfrac{3}{2}\left(tm\right)\)
Gọi tuổi của Minh là x
=>Tuổi của Ninh là x+2
Tuổi của Lan là 1/2x
Theo đề, ta co: 1/2x+x+2+x=27
=>2,5x=25
=>x=10
\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)
4:
Vẽ OM vuông góc CD
=>OM vuông góc HK
Xét hình thang AHKB có
O là trung điểm của AB
OM//AH//BK
=>M là trung điểm của HK
=>MH=MK
ΔOCD cân tại O
mà OM là đường cao
nên M là trung điểm của CD
=>MC=MD
MC+CH=MH
MD+DK=MK
mà MH=MK và MC=MD
nên CH=DK