Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B = x2 + 4y2 - 5x + 10y - 4xy + 17
= ( x2 - 4xy + 4y2 ) - ( 5x - 10y ) + 17
= ( x - 2y )2 - 5( x - 2y ) + 17
= 52 - 5.5 + 17
= 17
b) C = 2( a3 + b3 ) - 3( a2 + b2 )
= 2( a + b )( a2 - ab + b2 ) - 3( a2 + b2 )
= 2( a2 - ab + b2 ) - 3a2 - 3b2 ( gt a + b = 1 )
= 2a2 - 2ab + 2b2 - 3a2 - 3b2
= -a2 - 2ab - b2
= -( a2 + 2ab + b2 )
= -( a + b )2
= -1
c) a + b + c + d = 0
<=> a + b = -( c + d )
<=> ( a + b )3 = -( c + d )3
<=> a3 + 3a2b + 3ab2 + b3 = -( c3 + 3c2d + 3cd2 + d3 )
<=> a3 + 3a2b + 3ab2 + b3 = -c3 - 3c2d - 3cd2 - d3
<=> a3 + b3 + c3 + d3 = -3c2d - 3cd2 - 3a2b - 3ab2
<=> a3 + b3 + c3 + d3 = -3cd( c + d ) - 3ab( a + b )
<=> a3 + b3 + c3 + d3 = 3ab( c + d ) - 3cd( c + d ) < Do ( a + b ) = -( c + d ) >
<=> a3 + b3 + c3 + d3 = 3( ab - cd )( c + d )
<=> a3 + b3 + c3 + d3 - 3( ab - cd )( c + d ) = 0
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
\(a,A=\left(2x-5\right)^2-\left(2x+5\right)^2+40x-1\)
\(=\left(2x-5-2x-5\right)\left(2x-5+2x+5\right)+40x-1\)
\(=-10.4x^2+40x-1\)
\(=-40x^2+40x-1=-1\)
\(b,B=\left(3x-2y\right)^2+\left(3x+2y\right)^2-18x-8y^2+1\)
\(=9x^2-12xy+4y^2+9x^2+12xy+4y^2-18x-8y^2+1\)
\(=18x^2-18x+1\)
\(c,C=\left(2+x\right)^2-\left(2-x\right)^2-8x+3\)
\(=\left(2+x-2+x\right)\left(2+x+2-x\right)-8x+3\)
\(=2x.4-8x+3=3\)
a) (x3 - 27) : (x - 3)
= (x3 - 33) : (x - 3)
= (x - 3)(x2 - 3x + 9) : (x - 3)
= x2 - 3x + 9
b) Xem lại đề nhé em. Sai dấu chỗ nào đó
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
a)\(\left(-x^2y^5\right)^2:\left(-x^2y^5\right)=\left(-x^2y^5\right)\)
b)\(5\cdot\left(x-2y\right)^3:\left(5x-10y\right)\)
\(=5\cdot\left(x-2y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)
\(=\left(5x-10y\right)\cdot\left(x-2y\right)^2:\left(5x-10y\right)\)
\(=\left(x-2y\right)^2\)
Thay \(x=\frac{1}{2},y=1\) vào:
\(\left(\frac{1}{2}-2\cdot1\right)^2=\left(\frac{-3}{2}\right)^2=\frac{9}{4}\)