Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tứ giác AEDC có
IA=ID; IC=IE => AEDC là hình bình hành (tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> ED//AC và ED=AC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
b/
Ta có AEDC là hbh => AE//DC và AE=DC (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Mà DC=DB => AE=BD
\(DB\in DC\) => AE//DB
=> AEBD là hình bình hành (Tứ giác có 1 cặp cạnh đối // và bằng nhau thì là hbh)
=> EB=AD và EB//AD (trong hbh các cặp cạnh đối song song và = nhau từng đôi một)
Ta có EB//AD mà \(AD\perp BC\Rightarrow EB\perp BC\)
c/ Ta có AEBD là hbh => JA=JB (Trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => J là trung điểm AB
d/ Xét \(\Delta ABD\)
JA=JB; IA=ID => IJ là đường trung bình của \(\Delta ABD\) => IJ//BC
\(\Rightarrow IJ=\frac{DB}{2}\)
Ta có DB=DC (Trong tg cân đường cao từ đỉnh đồng thời là đường trung tuyến)\(\Rightarrow DB=\frac{BC}{2}\)
\(\Rightarrow IJ=\frac{DB}{2}=\frac{\frac{BC}{2}}{2}=\frac{1}{4}BC\)
e/
Xét HCN AEBD có
\(\Rightarrow JE=JD=\frac{ED}{2}\) (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
Xét tg vuông EKD có
\(JE=JD\Rightarrow IK=\frac{ED}{2}=JE=JD\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
\(\Rightarrow\Delta AJK;\Delta BJK\) cân tại J \(\Rightarrow\widehat{BAK}=\widehat{AKJ};\widehat{ABK}=\widehat{BKJ}\) (góc ở đáy tg cân) (1)
Xét \(\Delta AKB\)
\(\widehat{BAK}+\widehat{ABK}+\widehat{AKB}=180^o\) (tổng các góc trong của tg = 180 độ)
\(\Rightarrow\widehat{BAK}+\widehat{ABK}+\widehat{AKJ}+\widehat{BKJ}=180^o\)(2)
Từ (1) và (2) \(\Rightarrow2\left(\widehat{AKJ}+\widehat{BKJ}\right)=180^o\Rightarrow\widehat{AKJ}+\widehat{BKJ}=\widehat{AKB}=90^o\)
f/
Xét tg vuông IBD và tg vuông ICD có
ID chung
DB=DC (cmt)
\(\Rightarrow\Delta IBD=\Delta ICD\) (Hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{IBD}=\widehat{ICD}\) (1)
Xét tg vuông IDK
\(\widehat{IDK}+\widehat{CID}=90^o\)
Xét tg vuông ICD
\(\widehat{ICD}+\widehat{CID}=90^o\)
\(\Rightarrow\widehat{IDK}=\widehat{ICD}\) (cùng phụ với \(\widehat{CID}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{IDK}=\widehat{IBD}\)
a) Ta có :
\(x - y = 5\)
\(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{5}{-1}=-5\)
\(\Rightarrow\hept{\begin{cases}x=-5 . 2 = -10\\y=-5.3=-15\end{cases}}\)
b) Ta có :
\(x - y = 9\)
\(\frac{x}{-2}=\frac{y}{-5}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{-2}=\frac{y}{-5}=\frac{x-y}{-2-\left(-5\right)}=\frac{9}{3}=3\)
\(\Rightarrow\hept{\begin{cases}x=3. \left(-2 \right)= -6\\y=3 . \left(-5\right) = -15\end{cases}}\)
1, xét tam giác BDA và tam giác BEC có : ^ABC chung
^BEC = ^BDA = 90
=> tam giác BDA đồng dạng với tam giác BEC (g-g)
=> ^BAD = ^BCE
2, xét tam giác HEA và tam giác BDA có : ^BAD chung
^HEA = ^BDA = 90
=> tam giác HEA đồng dạng với tg BDA (g-g)
=> ^AHE = ^ABD
3, có : ^AHE = ^ACB mà AHE = 60 => ^ABC = 60
có ^BAC + ^BAD = 90 => ^BAD = 30
mà ^BAD + ^DAC = 30 + 45 = 75 = ^BAC
XONG tính ra ^C
1 . Ta có :
AP // BC ( gt )
góc PAC và góc BCA ở vị trí so le trong
Suy ra : góc PAC = góc BCA
Xét tam giác PNA và tam giác MNC , ta có :
góc ANP = góc MNC ( đối đỉnh )
AN = NC ( N là trung điểm AC )
góc PAN = góc NCM ( cmt )
Do đó : tam giác PNA = tam giác MNC
b . Xét tứ giác AMPC , ta có :
AP // MC ( AP // BC )
AP = MC ( tam giác PNA = tam giác MNC )
Suy ra : tứ giác AMPC là hình bình hành
=> PC = AM
a/
Xét tg vuông AHB có
\(\widehat{BAH}+\widehat{ABC}=90^o\)
và tg vuông ABC có
\(\widehat{ACB}+\widehat{ABC}=90^o\)
\(\Rightarrow\widehat{BAH}=\widehat{ACB}\) (1)
Ta có \(AB=\frac{AC}{2};CD=\frac{AC}{2}\Rightarrow AB=CD\) (2)
Từ (1) và (2) \(\Rightarrow\Delta AHB=\Delta CED\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
Ta có
\(DE\perp BC;AH\perp BC\) => DE // AH
\(DA=DC\left(gt\right)\)
\(\Rightarrow EH=EC\) (trong tam giác đường thẳng đi qua trung điểm 1 cạnh và song song với 1 cạnh thì đi qua trung điểm cạnh còn lại)
=> DE là trung tuyến của \(\Delta HDC\) mà DE cũng là đường cao của \(\Delta HDC\)
=> \(\Delta HDC\) cân tại D (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/
Xét tg vuông AHC có \(DA=DC\Rightarrow HD=\frac{AC}{2}\) (trung tuyến thuộc cạnh huyền)
\(\Rightarrow AB=HD=\frac{AC}{2}\)(1)
\(\Delta HDC\) cân \(\Rightarrow\widehat{ACB}=\widehat{DHC}\) (góc ở đáy tg cân)
Mà \(\widehat{ACB}=\widehat{BAH}\left(cmt\right)\)
\(\Rightarrow\widehat{DHC}=\widehat{BAH}\) (2)
Từ (1) và (2) \(\Rightarrow\Delta AHB=\Delta HED\) (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
\(\Rightarrow AH=HE\)
Xét tg vuông ABD có \(IB=ID\left(gt\right)\Rightarrow AI=\frac{BD}{2}\) (trung tuyến thuộc cạnh huyền)
Xét tg vuông BDE có \(IB=ID\left(gt\right)\Rightarrow EI=\frac{BD}{2}\) (trung tuyến thuộc cạnh huyền)
\(\Rightarrow AI=EI=\frac{BD}{2}\)
Xét \(\Delta AHI\) và \(\Delta EHI\) có
\(AH=HE;AI=EI;\)HI chung \(\Rightarrow\Delta AHI=\Delta EHI\left(c.c.c\right)\)
d/
IK//BC \(\Rightarrow\widehat{DIK}=\widehat{DBC}\) (góc đồng vị) (1)
IK//BC \(\Rightarrow\widehat{EIK}=\widehat{IEB}\) (góc so le trong) (2)
Ta có \(BI=DI=\frac{BD}{2}\left(gt\right);EI=\frac{BD}{2}\left(cmt\right)\Rightarrow BI=EI=DI=\frac{BD}{2}\) => \(\Delta IBE\) cân tại I \(\Rightarrow\widehat{DBC}=\widehat{IEB}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\widehat{DIK}=\widehat{EIK}\)
Xét \(\Delta IKD\) và \(\Delta IKE\) có
IK chung
DI=EI (cmt)
\(\widehat{DIK}=\widehat{EIK}\left(cmt\right)\)
\(\Rightarrow\Delta IKD=\Delta IKE\left(c.g.c\right)\)
bạn có biết làm câu e,f nếu có thì bạn giúp mình nốt nha
a. ta có :\(\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\Rightarrow x^2=25\)
\(\orbr{\begin{cases}x=5\Rightarrow y=4\\x=-5\Rightarrow y=-4\end{cases}}\)
2.\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^3}{27}=\frac{y^3}{64}=\frac{z^3}{125}=\frac{x^3+y^3-z^3}{27+64-125}=\frac{26}{17}\)
Vậy \(x=3\sqrt[3]{\frac{26}{17}},y=4\sqrt[3]{\frac{26}{17}},z=5\sqrt[3]{\frac{26}{17}}\)
3.\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x+y-z}{\frac{1}{8}+\frac{1}{3}-\frac{1}{2}}=-\frac{9}{-\frac{1}{24}}=216\) vậy \(\hept{\begin{cases}x=\frac{216}{8}=27\\y=\frac{216}{3}=72\\z=\frac{216}{2}=108\end{cases}}\)
4.\(\frac{x}{3}=\frac{1-y}{4}=\frac{z}{2}=\frac{3x+1-y-z}{3\times3+4-2}=\frac{11}{11}=1\)
Vậy \(x=3,y=-3,z=2\)
Bài 1:
Vì AD là p/g góc A nên \(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{BAC}=30^0\)
Mà \(\widehat{A_2}+\widehat{C}+\widehat{D_1}=180^0\Rightarrow\widehat{D_1}=180^0-30^0-40^0=110^0\)
Mà AE//BC nên \(\widehat{EAD}=\widehat{D_1}=110^0\left(so.le.trong\right)\)
Vì DE//AC nên \(\widehat{A_2}=\widehat{D_2}=30^0\left(so.le.trong\right);\widehat{D_3}=\widehat{C}=40^0\left(đồng.vị\right)\)
Vì AE//BC nên \(\widehat{D_3}=\widehat{E}=40^0\)
Vậy các góc tg ADE là \(\widehat{A}=110^0;\widehat{D}=30^0;\widehat{E}=40^0\)
thế còn câu 2, mình chỉ cần câu a,b thôi được ko ??