Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$C=1+4+...+4^{6}$
$4C=4+4^{2}+...+4^{7}$
$4C-C=4+4^{2}+...+4^{7}-1-4-...-4^{6}$
$3C=4^{7}-1$
$C=\dfrac{4^{7}-1}{3}$
Để tính tổng S = 1 + 4 + 4^2 + ... + 4^6, ta có thể sử dụng công thức tổng của cấp số nhân:
S = (a * (r^n - 1)) / (r - 1)
Trong đó:
- a là số hạng đầu tiên của dãy (a = 1)
- r là công bội của dãy (r = 4)
- n là số lượng số hạng trong dãy (n = 6)
Áp dụng vào bài toán, ta có:
S = (1 * (4^6 - 1)) / (4 - 1)
= (4^6 - 1) / 3
Để chứng minh A = {(4^7 - 1) : 3}, ta cần chứng minh rằng S = (4^7 - 1) : 3.
Ta có:
(4^7 - 1) : 3 = (4^7 - 1) / 3
Để chứng minh hai biểu thức trên bằng nhau, ta sẽ chứng minh rằng (4^7 - 1) / 3 = (4^6 - 1) / 3.
Ta có:
(4^7 - 1) / 3 = (4^6 * 4 - 1) / 3
= (4^6 * 4 - 1 * 4^0) / 3
= (4^6 * 4 - 4^6) / 3
= 4^6 * (4 - 1) / 3
= (4^6 - 1) / 3
Vậy ta đã chứng minh được A = {(4^7 - 1) : 3}.
1) Thay x = -8 , ta có ;
(-8) - 2 x (-8) - 3 x (-8) - 4 x (-8 ) - 5 x (-8) = 104
2) Thay x = -8 , ta có ;
(-8 + 1)-2(-8 + 1)-3( -8 + 1 )- 4( -8 + 1 ) - 5( -8 + 1 ) =91
Đúng thì tick ko đúng thì thôi
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
vì 1/9 > 1/40 ; 1/29 > 1/40 ; 1/31 > 1/40; 1/39 > 1/40
nên 1/9 + 1/ 29 + 1/31 + 1/39 > 1/40 + 1/40 + 1/40 + 1/40 mà 1/40 + 1/40 + 1/40 + 1/40 = 1/10
=) M > 1/10
M > 1/20 + 1/30 + 1/40 + 1/40
M> 2/15 > 2/20 = 1/10
=> M > 1/10
Tớ thấy bài này bạn nên nhóm các phân số có chung một dữ kiện nào đó với nhau rồi tính