Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
Ta có : 6x2 - 11x + 3
= 6x2 - 2x - 9x + 3
= (6x2 - 2x) - (9x - 3)
= 2x(3x - 1) - 3(3x - 1)
= (2x - 3)(3x - 1)
a: =(x-y)^2+2(x-y)
=(x-y)(x-y+2)
c: =(x-3)(x+3)+(x-3)^2
=(x-3)(x+3+x-3)
=2x(x-3)
d: =(x+3)(x^2-3x+9)-4x(x+3)
=(x+3)(x^2-7x+9)
e: =(x^2-8x+7)(x^2-8x+15)-20
=(x^2-8x)^2+22(x^2-8x)+85
=(x^2-8x+17)(x^2-8x+5)
\(=\left(x^3-2x^2+x+2x^2-4x+2-2x+7\right):\left(x^2-2x+1\right)\\ =\left[\left(x^2-2x+1\right)\left(x+2\right)-2x+7\right]:\left(x^2-2x+1\right)\\ =x+2\left(dư:-2x+7\right)\)
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1\right)-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-x.\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\)
\(\Leftrightarrow26x+28=54\Leftrightarrow26x=54-28\Leftrightarrow26x=26\Leftrightarrow x=1\)
Vậy nghiệm của phương trình là x=1
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+6.\left(x^2+2x+1\right)+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)
\(\Leftrightarrow27x+12x+6=-33\Leftrightarrow39x=-33-6\Leftrightarrow39x=-39\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình là x = -1
Trần Anh: Hí hí =)) ÀI LỚP DIU CHIU CHIU CHÍU :3 CẢM ƠN PẠN NHIỀU NHÁ ;) ;) ;)
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
a) Ta có: \(\left(2x+7\right)^2=\left(x+3\right)^2\)
\(\Leftrightarrow\left(2x+7\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x+7-x-3\right)\left(2x+7+x+3\right)=0\)
\(\Leftrightarrow\left(x+4\right)\cdot\left(3x+10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-4;-\dfrac{10}{3}\right\}\)
b) Ta có: \(\left(4x+14\right)^2=\left(7x+2\right)^2\)
\(\Leftrightarrow\left(4x+14\right)^2-\left(7x+2\right)^2=0\)
\(\Leftrightarrow\left(4x+14-7x-2\right)\left(4x+14+7x+2\right)=0\)
\(\Leftrightarrow\left(-3x+12\right)\left(11x+16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x+12=0\\11x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=-12\\11x=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{16}{11}\end{matrix}\right.\)Vậy: \(S=\left\{4;-\dfrac{16}{11}\right\}\)
(2x+7)2=(x+3)2
=>(2x+7)2-(x+3)2=0
=>(2x+7-x-3)(2x+7+x+3)=0
=>(x-4)(3x+10)=0
=>x-4=0 hoặc 3x+10=0
TH1:x-4=0=>x=4
TH2:3x+10=0=>x=-10/3
(4x+14)2=(7x+2)2
(4x+14)2-(7x+2)2=0
(4x+14-7x-2)(4x+14+7x+2)=0
(-3x+12)(11x+16)=0
TH1:-3x+12=0=>x=4
TH2:11x+16=0=>x=-16/11